ترغب بنشر مسار تعليمي؟ اضغط هنا

High-Dimensional Single-Photon Quantum Gates: Concepts and Experiments

105   0   0.0 ( 0 )
 نشر من قبل Manuel Erhard
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Transformations on quantum states form a basic building block of every quantum information system. From photonic polarization to two-level atoms, complete sets of quantum gates for a variety of qubit systems are well known. For multi-level quantum systems beyond qubits, the situation is more challenging. The orbital angular momentum modes of photons comprise one such high-dimensional system for which generation and measurement techniques are well-studied. However, arbitrary transformations for such quantum states are not known. Here we experimentally demonstrate a four-dimensional generalization of the Pauli X-gate and all of its integer powers on single photons carrying orbital angular momentum. Together with the well-known Z-gate, this forms the first complete set of high-dimensional quantum gates implemented experimentally. The concept of the X-gate is based on independent access to quantum states with different parities and can thus be easily generalized to other photonic degrees-of-freedom, as well as to other quantum systems such as ions and superconducting circuits.



قيم البحث

اقرأ أيضاً

An open question in quantum optics is how to manipulate and control complex quantum states in an experimentally feasible way. Here we present concepts for transformations of high-dimensional multi-photonic quantum systems. The proposals rely on two n ew ideas: (I) a novel high-dimensional quantum non-demolition measurement, (II) the encoding and decoding of the entire quantum transformation in an ancillary state for sharing the necessary quantum information between the involved parties. Many solutions can readily be performed in laboratories around the world, and identify important pathways for experimental research in the near future. The concept has been found using the computer algorithm Melvin for designing computer-inspired quantum experiments. This demonstrates that computer algorithms can inspire new ideas in science, which is a widely unexplored potential.
Quantum entanglement plays an important role in quantum information processes, such as quantum computation and quantum communication. Experiments in laboratories are unquestionably crucial to increase our understanding of quantum systems and inspire new insights into future applications. However, there are no general recipes for the creation of arbitrary quantum states with many particles entangled in high dimensions. Here, we exploit a recent connection between quantum experiments and graph theory and answer this question for a plethora of classes of entangled states. We find experimental setups for Greenberger-Horne-Zeilinger states, W states, general Dicke states, and asymmetrically high-dimensional multipartite entangled states. This result sheds light on the producibility of arbitrary quantum states using photonic technology with probabilistic pair sources and allows us to understand the underlying technological and fundamental properties of entanglement.
Unitary transformations are the fundamental building blocks of gates and operations in quantum information processing allowing the complete manipulation of quantum systems in a coherent manner. In the case of photons, optical elements that can perfor m unitary transformations are readily available only for some degrees of freedom, e.g. wave plates for polarisation. However for high-dimensional states encoded in the transverse spatial modes of light, performing arbitrary unitary transformations remains a challenging task for both theoretical proposals and actual implementations. Following the idea of multi-plane light conversion, we show that it is possible to perform a broad variety of unitary operations when the number of phase modulation planes is comparable to the number of modes. More importantly, we experimentally implement several high-dimensional quantum gates for up to 5-dimensional states encoded in the full-field mode structure of photons. In particular, we realise cyclic and quantum Fourier transformations, known as Pauli $hat{X}$-gates and Hadamard $hat{H}$-gates, respectively, with an average visibility of more than 90%. In addition, we demonstrate near-perfect unitarity by means of quantum process tomography unveiling a process purity of 99%. Lastly, we demonstrate the benefit of the two independent spatial degrees of freedom, i.e. azimuthal and radial, and implement a two-qubit controlled-NOT quantum operation on a single photon. Thus, our demonstrations open up new paths to implement high-dimensional quantum operations, which can be applied to various tasks in quantum communication, computation and sensing schemes.
Single-photon sources based on semiconductor quantum dots have emerged as an excellent platform for high efficiency quantum light generation. However, scalability remains a challenge since quantum dots generally present inhomogeneous characteristics. Here we benchmark the performance of fifteen deterministically fabricated single-photon sources. They display an average indistinguishability of 90.6 +/- 2.8 % with a single-photon purity of 95.4 +/- 1.5 % and high homogeneity in operation wavelength and temporal profile. Each source also has state-of-the-art brightness with an average first lens brightness value of 13.6 +/- 4.4 %. Whilst the highest brightness is obtained with a charged quantum dot, the highest quantum purity is obtained with neutral ones. We also introduce various techniques to identify the nature of the emitting state. Our study sets the groundwork for large-scale fabrication of identical sources by identifying the remaining challenges and outlining solutions.
Cavity quantum electrodynamic schemes for quantum gates are amongst the earliest quantum computing proposals. Despite continued progress, and the dramatic recent demonstration of photon blockade, there are still issues with optimal coupling and gate operation involving high-quality cavities. Here we show dynamic control techniques that allow scalable cavity-QED based quantum gates, that use the full bandwidth of the cavities. When applied to quantum gates, these techniques allow an order of magnitude increase in operating speed, and two orders of magnitude reduction in cavity Q, over passive cavity-QED architectures. Our methods exploit Stark shift based Q-switching, and are ideally suited to solid-state integrated optical approaches to quantum computing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا