ترغب بنشر مسار تعليمي؟ اضغط هنا

Contract-Theoretic Resource Allocation for Critical Infrastructure Protection

152   0   0.0 ( 0 )
 نشر من قبل AbdelRahman Eldosouky
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Critical infrastructure protection (CIP) is envisioned to be one of the most challenging security problems in the coming decade. One key challenge in CIP is the ability to allocate resources, either personnel or cyber, to critical infrastructures with different vulnerability and criticality levels. In this work, a contract-theoretic approach is proposed to solve the problem of resource allocation in critical infrastructure with asymmetric information. A control center (CC) is used to design contracts and offer them to infrastructures owners. A contract can be seen as an agreement between the CC and infrastructures using which the CC allocates resources and gets rewards in return. Contracts are designed in a way to maximize the CCs benefit and motivate each infrastructure to accept a contract and obtain proper resources for its protection. Infrastructures are defined by both vulnerability levels and criticality levels which are unknown to the CC. Therefore, each infrastructure can claim that it is the most vulnerable or critical to gain more resources. A novel mechanism is developed to handle such an asymmetric information while providing the optimal contract that motivates each infrastructure to reveal its actual type. The necessary and sufficient conditions for such resource allocation contracts under asymmetric information are derived. Simulation results show that the proposed contract-theoretic approach maximizes the CCs utility while ensuring that no infrastructure has an incentive to ask for another contract, despite the lack of exact information at the CC.



قيم البحث

اقرأ أيضاً

We study online resource allocation in a cloud computing platform, through a posted pricing mechanism: The cloud provider publishes a unit price for each resource type, which may vary over time; upon arrival at the cloud system, a cloud user either t akes the current prices, renting resources to execute its job, or refuses the prices without running its job there. We design pricing functions based on the current resource utilization ratios, in a wide array of demand-supply relationships and resource occupation durations, and prove worst-case competitive ratios of the pricing functions in terms of social welfare. In the basic case of a single-type, non-recycled resource (i.e., allocated resources are not later released for reuse), we prove that our pricing function design is optimal, in that any other pricing function can only lead to a worse competitive ratio. Insights obtained from the basic cases are then used to generalize the pricing functions to more realistic cloud systems with multiple types of resources, where a job occupies allocated resources for a number of time slots till completion, upon which time the resources are returned back to the cloud resource pool.
Microsoft Azure is dedicated to guarantee high quality of service to its customers, in particular, during periods of high customer activity, while controlling cost. We employ a Data Science (DS) driven solution to predict user load and leverage these predictions to optimize resource allocation. To this end, we built the Seagull infrastructure that processes per-server telemetry, validates the data, trains and deploys ML models. The models are used to predict customer load per server (24h into the future), and optimize service operations. Seagull continually re-evaluates accuracy of predictions, fallback to previously known good models and triggers alerts as appropriate. We deployed this infrastructure in production for PostgreSQL and MySQL servers across all Azure regions, and applied it to the problem of scheduling server backups during low-load time. This minimizes interference with user-induced load and improves customer experience.
Large software platforms (e.g., mobile app stores, social media, email service providers) must ensure that files on their platform do not contain malicious code. Platform hosts use security tools to analyze those files for potential malware. However, given the expensive runtimes of tools coupled with the large number of exchanged files, platforms are not able to run all tools on every incoming file. Moreover, malicious parties look to find gaps in the coverage of the analysis tools, and exchange files containing malware that exploits these vulnerabilities. To address this problem, we present a novel approach that models the relationship between malicious parties and the security analyst as a leader-follower Stackelberg security game. To estimate the parameters of our model, we have combined the information from the VirusTotal dataset with the more detailed reports from the National Vulnerability Database. Compared to a set of natural baselines, we show that our model computes an optimal randomization over sets of available security analysis tools.
Instilling resilience in critical infrastructure (CI) such as dams or power grids is a major challenge for tomorrows cities and communities. Resilience, here, pertains to a CIs ability to adapt or rapidly recover from disruptive events. In this paper , the problem of optimizing and managing the resilience of CIs is studied. In particular, a comprehensive two-fold framework is proposed to improve CI resilience by considering both the individual CIs and their collective contribution to an entire system of multiple CIs. To this end, a novel analytical resilience index is proposed to measure the effect of each CIs physical components on its probability of failure. In particular, a Markov chain defining each CIs performance state and a Bayesian network modeling the probability of failure are introduced to infer each CIs resilience index. Then, to maximize the resilience of a system of CIs, a novel approach for allocating resources, such as drones or maintenance personnel, is proposed. In particular, a comprehensive resource allocation framework, based on the tools of contract theory, is proposed enabling the system operator to optimally allocate resources, such as, redundant components or monitoring devices to each individual CI based on its economic contribution to the entire system. The optimal solution of the contract-based resilience resource allocation problem is analytically derived using dynamic programming. The proposed framework is then evaluated using a case study pertaining to hydropower dams and their interdependence to the power grid. Simulation results, within the case study, show that the system operator can economically benefit from allocating the resources while dams have a 60% average improvement over their initial resilience indices.
In this paper we introduce a class of Markov decision processes that arise as a natural model for many renewable resource allocation problems. Upon extending results from the inventory control literature, we prove that they admit a closed form soluti on and we show how to exploit this structure to speed up its computation. We consider the application of the proposed framework to several problems arising in very different domains, and as part of the ongoing effort in the emerging field of Computational Sustainability we discuss in detail its application to the Northern Pacific Halibut marine fishery. Our approach is applied to a model based on real world data, obtaining a policy with a guaranteed lower bound on the utility function that is structurally very different from the one currently employed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا