ترغب بنشر مسار تعليمي؟ اضغط هنا

Tunable pseudogaps due to non-local coherent transport in voltage-biased three-terminal Josephson junctions

84   0   0.0 ( 0 )
 نشر من قبل Ciprian Padurariu
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the proximity effect in junctions between $N=3$ superconductors under commensurate voltage bias. The bias is chosen to highlight the role of transport processes that exchange multiple Cooper pairs coherently between more than two superconductors. Such non-local processes can be studied in the dc response, where local transport processes do not contribute. We focus on the proximity-induced normal density of states that we investigate in a wide parameter space. We reveal the presence of deep and highly tunable pseudogaps and other rich structures. These are due to a static proximity effect that is absent for $N=2$ and is sensitive to an emergent superconducting phase associated to non-local coherent transport. In comparison with results for $N=2$, we find similarities in the signature peaks of multiple Andreev reflections. We discuss the effect of electron-hole decoherence and of various types of junction asymmetries. Our predictions can be investigated experimentally using tunneling spectroscopy.

قيم البحث

اقرأ أيضاً

Josephson junctions with three or more superconducting leads have been predicted to exhibit topological effects in the presence of few conducting modes within the interstitial normal material. Such behavior, of relevance for topologically-protected q uantum bits, would lead to specific transport features measured between terminals, with topological phase transitions occurring as a function of phase and voltage bias. Although conventional, two-terminal Josephson junctions have been studied extensively, multi-terminal devices have received relatively little attention to date. Motivated in part by the possibility to ultimately observe topological phenomena in multi-terminal Josephson devices, as well as their potential for coupling gatemon qubits, here we describe the superconducting features of a top-gated mesoscopic three-terminal Josephson device. The device is based on an InAs two-dimensional electron gas (2DEG) proximitized by epitaxial aluminum. We map out the transport properties of the device as a function of bias currents, top gate voltage and magnetic field. We find a very good agreement between the zero-field experimental phase diagram and a resistively and capacitively shunted junction (RCSJ) computational model.
We study the emergent band topology of subgap Andreev bound states in the three-terminal Josephson junctions. We scrutinize the symmetry constraints of the scattering matrix in the normal region connecting superconducting leads that enable the topolo gical nodal points in the spectrum of Andreev states. When the scattering matrix possesses time-reversal symmetry, the gap closing occurs at special stationary points that are topologically trivial as they carry vanishing Berry fluxes. In contrast, for the time-reversal broken case we find topological monopoles of the Berry curvature and corresponding phase transition between states with different Chern numbers. The latter is controlled by the structure of the scattering matrix that can be tuned by a magnetic flux piercing through the junction area in a three-terminal geometry. The topological regime of the system can be identified by nonlocal conductance quantization that we compute explicitly for a particular parametrization of the scattering matrix in the case where each reservoir is connected by a single channel.
We theoretically propose a phase-coherent thermal circulator based on ballistic multiterminal Josephson junctions. The breaking of time-reversal symmetry by either a magnetic flux or a superconducting phase bias allows heat to flow preferentially in one direction from one terminal to the next while heat flow in the opposite direction is suppressed. We find that our device can achieve a high circulation efficiency over a wide range of parameters and that its performance is robust with respect to the presence of disorder. We provide estimates for the expected heat currents for realistic samples.
We present an exhaustive theoretical analysis of a double-loop Josephson proximity interferometer, as the one recently realized by Strambini et al. for the control of the Andreev spectrum via an external magnetic field. This system, called $omega$-SQ UIPT, consists of a T-shaped diffusive normal metal (N) attached to three superconductors (S) forming a double loop configuration. By using the quasiclassical Green function formalism, we calculate the local normalized density of states, the Josephson currents through the device and the dependence of the former on the length of the junction arms, the applied magnetic field and the S/N interface transparencies. We show that by tuning the fluxes through the double loop, the system undergoes transitions from a gapped to a gapless state. We also evaluate the Josephson currents flowing in the different arms as a function of magnetic fluxes and explore the quasi-particle transport, by considering a metallic probe tunnel-coupled to the Josephson junction and calculating its I-V characteristics. Finally, we study the performances of the $omega$-SQUIPT and its potential applications, by investigating its electrical and magnetometric properties.
We propose a protocol to locally detect the Berry curvature of a three terminal Josephson junction with a quantum dot based on a synchronic detection when an AC modulation is applied in the device. This local gauge invariant quantity is expressed in terms of the instantaneous Green function of the Bogoliubov-de Gennes Hamiltonian. We analyze the contribution to the Berry curvature from both the quasi-particle excitations and the Andreev bound state levels by introducing an effective low-energy model. In addition, we propose to induce topological properties in the junction by breaking time-reversal symmetry with a microwave field in the non-resonant regime. In the last case, the Floquet-Andreev levels are the ones that determine the topological structure of the junction, which is formally equivalent to a 2D-honeycomb Haldane lattice. A relation between the Floquet Berry curvature and the transconductance of the driven system is derived.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا