ترغب بنشر مسار تعليمي؟ اضغط هنا

Strange hadron production in pp, pPb and PbPb collisions at LHC energies

98   0   0.0 ( 0 )
 نشر من قبل Kapil Saraswat
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a systematic analysis of transverse momentum $(p_{T})$ spectra of the strange hadrons in different multiplicity events produced in pp collision at $sqrt{s}$ = 7 TeV, pPb collision at $sqrt{s_{NN}}$ = 5.02 TeV and PbPb collision at $sqrt{s_{NN}}$ = 2.76 TeV. Both the single and differential freeze out scenarios of strange hadrons $K^0_s$, $Lambda$ and $Xi^-$ are considered while fitting using a Tsallis distribution which is modified to include transverse flow. The $p_{T}$ distributions of these hadrons in different systems are characterized in terms of the parameters namely, Tsallis temperature $(T)$, power $(n)$ and average transverse flow velocity $(beta)$. It is found that for all the systems, transverse flow increases as we move from lower to higher multiplicity events. In the case of the differential freeze-out scenario, the degree of thermalization remains similar for events of different multiplicity classes in all the three systems. The Tsallis temperature increases with the mass of the hadrons and also increases with the event multiplicity in pp and pPb system but shows little variation with the multiplicity in PbPb system. In the case of the single freeze-out scenario, the difference between small systems (pp, pPb) and PbPb system becomes more evident. The high multiplicity PbPb events show higher degree of thermalization as compared to the events of pp and pPb systems. The trend of variation of the temperature in PbPb system with event multiplicity is opposite to what is found in the pp and pPb systems.

قيم البحث

اقرأ أيضاً

In this article, we will present a systematic analysis of transverse momentum spectra of the strange hadron in different multiplicity events produced in pp collision at $sqrt{s}$ = 7 TeV, pPb collision at $sqrt{s_{NN}}$ = 5.02 TeV and PbPb collision at $sqrt{s_{NN}}$ = 2.76 TeV. The differential freeze out scenario of strange hadron $K^{0}_{s}$ assumed while analyzing the data using a Tsallis distribution which is modified to include transverse flow. The $p_{T}$ distributions of strange hadron in different systems are characterized in terms of the parameters namely, Tsallis temperature ($T$), power ($n$) and average transverse flow velocity ($beta$).
Exclusive photoproduction of vector mesons in the perturbative two-gluon exchange formalism depends significantly on nucleon and nuclear gluon distributions. In the present study we calculate total cross sections and rapidity distributions of $J/psi( 1s)$, $psi(2s)$, $Upsilon(1s)$, $Upsilon(2s)$, and $Upsilon(3s)$ in ultraperipheral proton-lead (pPb) and lead-lead (PbPb) collisions at the CERN Large Hadron Collider (LHC) at $sqrt{s_{_{NN}}}=5$ TeV and $sqrt{s_{_{NN}}}=2.76$ TeV respectively. Effects of gluon shadowing are investigated and potentials for constraining nuclear gluon modifications are discussed.
In this paper we present a comprehensive analysis of exclusive vector meson photoproduction in $pp$, $pPb$ and $PbPb$ collisions at Run 2 LHC energies using the Color Dipole formalism. The rapidity distributions and total cross sections for the $rho$ , $phi$, $J/Psi$, $Psi (2S)$ and $Upsilon$ production are estimated considering the more recent phenomenological models for the dipole - proton scattering amplitude, which are based on the Color Glass Condensate formalism and are able to describe the inclusive and exclusive $ep$ HERA data. Moreover, we also discuss the impact of the modelling of the vector meson wave functions on the predictions. The current theoretical uncertainty in the Color Dipole predictions is estimated and a comparison with the experimental results is performed.
77 - Min He , Ralf Rapp 2020
Recent measurements of various charm-hadron ratios in $pp$, $p$-Pb and Pb-Pb collisions at the LHC have posed challenges to the theoretical understanding of heavy-quark hadronization. The $Lambda_c/D^0$ ratio in $pp$ and $p$-Pb collisions shows large r values than those found in $e^+e^-$ and $ep$ collisions and predicted by Monte-Carlo event generators based on string fragmentation, at both low and intermediate transverse momenta ($p_T$). In AA collisions, the $D_s/D$ ratio is significantly enhanced over its values in $pp$, while the $Lambda_c/D^0$ data indicates a further enhancement at intermediate $p_T$. Here, we report on our recent developments for a comprehensive description of the charm hadrochemistry and transport in $pp$ and $AA$ collisions. For $pp$ collisions we find that the discrepancy between the $Lambda_c/D^0$ data and model predictions is much reduced by using a statistical hadronization model augmented by a large set of missing states in the charm-baryon spectrum, contributing to the $Lambda_c$ via decay feeddown. For $AA$ collisions, we develop a 4-momentum conserving resonance recombination model for charm-baryon formation implemented via event-by-event simulations that account for space-momentum correlations (SMCs) in transported charm- and thermal light-quark distributions. The SMCs, together with the augmented charm-baryon states, are found to play an important role in describing the baryon-to-meson enhancement at intermediate momenta. We emphasize the importance of satisfying the correct (relative) chemical equilibrium limit when computing the charm hadrochemistry and its momentum dependence with coalescence models.
It has been observed that the yields of strange and multi-strange hadrons relative to pion increase significantly with the event charged-particle multiplicity. We notice from experimental data that yield ratios between non-strange hadrons, like p/$pi $ or hadrons of same strange content, like $Lambda$/K$_s^0$, show similar enhancement. We have studied this behavior within the ambit of a parton model (EPOS3) and A Multi-Phase Transport (AMPT) model in pp and p-Pb collisions at LHC energies. We investigate model predictions of yields and yield ratios of different identified hadron productions as a function of charged-particle multiplicity and compare them with published ALICE results. The string melti
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا