ﻻ يوجد ملخص باللغة العربية
We report on rubidium vapor-cell Rydberg electromagnetically induced transparency (EIT) in a 0.7~T magnetic field where all involved levels are in the hyperfine Paschen-Back regime, and the Rydberg state exhibits a strong diamagnetic interaction with the magnetic field. Signals from both $^{85}mathrm{Rb}$ and $^{87}mathrm{Rb}$ are present in the EIT spectra. This feature of isotope-mixed Rb cells allows us to measure the field strength to within a $pm 0.12$% relative uncertainty. The measured spectra are in excellent agreement with the results of a Monte Carlo calculation and indicate unexpectedly large Rydberg-level dephasing rates. Line shifts and broadenings due to small inhomogeneities of the magnetic field are included in the model.
We investigate the transient optical response property of an electromagnetically induced transparency (EIT) in a cold Rydberg atomic gas. We show that both the transient behavior and the steady-state EIT spectrum of the system depend strongly on Rydb
We present a study of the Rydberg spectrum in ts{166}Er for series connected to the $4f^{12} (^3H_6) 6s$, $J_c=13/2 $ and $J_c=11/2 $ ionic core states using an all-optical detection based on electromagnetically induced transparency in an effusive at
We report electromagnetically induced transparency for the D1 and D2 lines in $^{6}$Li in both a vapour cell and an atomic beam. Electromagnetically induced transparency is created using co-propagating mutually coherent laser beams with a frequency d
We develop an approach to generate finite-range atomic interactions via optical Rydberg-state excitation and study the underlying excitation dynamics in theory and experiment. In contrast to previous work, the proposed scheme is based on resonant opt
We present experimental results on the influence of magnetic fields and laser polarization on electromagnetically induced transparency (EIT) using Rydberg levels of $^{87}$Rb atoms. The measurements are performed in a room temperature vapor cell with