ترغب بنشر مسار تعليمي؟ اضغط هنا

Global 3D radiation-hydrodynamics models of AGB stars. Effects of convection and radial pulsations on atmospheric structures

46   0   0.0 ( 0 )
 نشر من قبل Bernd Freytag
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context: Observations of asymptotic giant branch (AGB) stars with increasing spatial resolution reveal new layers of complexity of atmospheric processes on a variety of scales. Aim: To analyze the physical mechanisms that cause asymmetries and surface structures in observed images, we use detailed 3D dynamical simulations of AGB stars; these simulations self-consistently describe convection and pulsations. Methods: We used the CO5BOLD radiation-hydrodynamics code to produce an exploratory grid of global star-in-a-box models of the outer convective envelope and the inner atmosphere of AGB stars to study convection, pulsations, and shock waves and their dependence on stellar and numerical parameters. Results: The model dynamics are governed by the interaction of long-lasting giant convection cells, short-lived surface granules, and strong, radial, fundamental-mode pulsations. Radial pulsations and shorter wavelength, traveling, acoustic waves induce shocks on various scales in the atmosphere. Convection, waves, and shocks all contribute to the dynamical pressure and, thus, to an increase of the stellar radius and to a levitation of material into layers where dust can form. Consequently, the resulting relation of pulsation period and stellar radius is shifted toward larger radii compared to that of non-linear 1D models. The dependence of pulsation period on luminosity agrees well with observed relations. The interaction of the pulsation mode with the non-stationary convective flow causes occasional amplitude changes and phase shifts. The regularity of the pulsations decreases with decreasing gravity as the relative size of convection cells increases. The model stars do not have a well-defined surface. Instead, the light is emitted from a very extended inhomogeneous atmosphere with a complex dynamic pattern of high-contrast features.

قيم البحث

اقرأ أيضاً

The Luminous Blue Variable stars exhibit behavior ranging from light curve `microvariations on timescales of tens of days, to `outbursts accompanied by mass loss of up to 10e-03 solar masses per year, occurring decades apart, to `giant eruptions such as seen in Eta Carinae ejecting one or more solar masses and recurring on timescales of centuries. Here we review the work of the Los Alamos group since 1993 to investigate pulsations and instabilities in massive stars using linear pulsation models and non-linear hydrodynamic models. The models predict pulsational variability that may be associated with the microvariations. Using a nonlinear pulsation hydrodynamics code with a time-dependent convection treatment, we show that, in some circumstances, the Eddington limit is exceeded periodically in the pulsation driving region of the stellar envelope, accelerating the outer layers, and perhaps initiating mass loss or LBV outbursts. We discuss how pulsations and mass loss may be responsible for the location of the Humphreys-Davidson Limit in the H-R diagram. The `giant eruptions, however, must involve much deeper regions in the stellar core to cause such large amounts of mass to be ejected. We review and suggest some possible explanations, including mixing from gravity modes, secular instabilities, the epsilon mechanism, or the SASI instability as proposed for Type II supernovae. We outline future work and required stellar modeling capabilities to investigate these possibilities.
Opacity enhancements for stellar interior conditions have been explored to explain observed pulsation frequencies and to extend the pulsation instability region for B-type main-sequence variable stars. For these stars, the pulsations are driven in th e region of the opacity bump of Fe-group elements at $sim$200,000 K in the stellar envelope. Here we explore effects of opacity enhancements for the somewhat cooler main-sequence A-type stars, in which $p$-mode pulsations are driven instead in the second helium ionization region at $sim$50,000 K. We compare models using the new LANL OPLIB vs. LLNL OPAL opacities for the AGSS09 solar mixture. For models of 2 solar masses and effective temperature 7600 K, opacity enhancements have only a mild effect on pulsations, shifting mode frequencies and/or slightly changing kinetic-energy growth rates. Increased opacity near the bump at 200,000 K can induce convection that may alter composition gradients created by diffusive settling and radiative levitation. Opacity increases around the hydrogen and 1st He ionization region (13,000 K) can cause additional higher-frequency $p$ modes to be excited, raising the possibility that improved treatment of these layers may result in prediction of new modes that could be tested by observations. New or wider convective zones and higher convective velocities produced by opacity increases could also affect angular momentum transport during evolution. More work needs to be done to quantify the effects of opacity on the boundaries of the pulsation instability regions for A-type stars.
46 - T. Oba , Y. Iida , T. Shimizu 2020
Gas convection is observed in the solar photosphere as the granulation, i.e., having highly time-dependent cellular patterns, consisting of numerous bright cells called granules and dark surrounding-channels called intergranular lanes. Many efforts h ave been made to characterize the granulation, which may be used as an energy source for various types of dynamical phenomena. Although the horizontal gas flow dynamics in intergranular lanes may play a vital role, but they are poorly understood. This is because the Doppler signals can be obtained only at the solar limb, where the signals are severely degraded by a foreshortening effect. To reduce such a degradation, we use Hinodes spectroscopic data, which are free from a seeing-induced image degradation, and improve its image quality by correcting for straylight in the instruments. The dataset continuously covers from the solar disk to the limb, providing a multidirectional line-of-sight (LOS) diagnosis against the granulation. The obtained LOS flow-field variation across the disk indicates a horizontal flow speed of 1.8-2.4 km/s. We also derive the spatial distribution of the horizontal flow speed, which is 1.6 km/s in granules and 1.8 km/s in intergranular lanes, and where the maximum speed is inside intergranular lanes. This result newly suggests the following sequence of horizontal flow: A hot rising gas parcel is strongly accelerated from the granular center, even beyond the transition from the granules to the intergranular lanes, resulting in the fastest speed inside the intergranular lanes, and the gas may also experience decelerations in the intergranular lane.
This paper presents the results of the analysis of 3D simulations of solar magneto-convection that include the joint action of the ambipolar diffusion and the Hall effect. Three simulation-runs are compared: one including both ambipolar diffusion and Hall effect; one including only ambipolar diffusion; and one without any of these two effects. The magnetic field is amplified from initial field to saturation level by the action of turbulent local dynamo. In each of these cases, we study 2 hours of simulated solar time after the local dynamo reaches the saturation regime. We analyze the power spectra of vorticity, of magnetic field fluctuations and of the different components of the magnetic Poynting flux responsible for the transport of vertical or horizontal perturbations. Our preliminary results show that the ambipolar diffusion produces a strong reduction of vorticity in the upper chromospheric layers and that it dissipates the vortical perturbations converting them into thermal energy. The Hall effect acts in the opposite way, strongly enhancing the vorticity. When the Hall effect is included, the magnetic field in the simulations becomes, on average, more vertical and long-lived flux tube-like structures are produced. We trace a single magnetic structure to study its evolution pattern and the magnetic field intensification, and their possible relation to the Hall effect.
129 - C.C. Lovekin , J.A. Guzik 2014
We have calculated the pulsations of massive stars using a nonlinear hydrodynamic code including time-dependent convection. The basic structure models are based on a standard grid published by Meynet et al. (1994). Using the basic structure, we calcu lated envelope models, which include the outer few percent of the star. These models go down to depths of at least 2 million K. These models, which range from 40 to 85 solar masses, show a range of pulsation behaviours. We find models with very long period pulsations ( $>$ 100 d), resulting in high amplitude changes in the surface properties. We also find a few models that show outburst-like behaviour. The details of this behaviour are discussed, including calculations of the resulting wind mass-loss rates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا