ترغب بنشر مسار تعليمي؟ اضغط هنا

Quasi-Periodicities at Year Time Scales in Blazars

102   0   0.0 ( 0 )
 نشر من قبل Stefano Covino
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Stefano Covino




اسأل ChatGPT حول البحث

We examine the 2008-2016 gamma-ray and optical light curves of a number of bright Fermi blazars. In a fraction of them, the periodograms show possible evidence of quasi-periodicities related in the two bands. This coincidence strengthens their physical meaning. Comparing with results from the periodicity search of quasars, the presence of quasi-periodicities in blazars suggests that the basic condition for its observability is related to the relativistic jet in the observer direction, but the overall picture remains uncertain.



قيم البحث

اقرأ أيضاً

The availability of about a decade of uninterrupted sky monitoring by the Fermi satellite has made possible to study long-term quasi-periodicities for high-energy sources. It is therefore not a surprise that for several blazars in the recent literatu re claims for such periodicities, with various level of confidence, have been reported. The confirmation of these findings could be of tremendous importance for the physical description of this category of sources and have consequences for the gravitational wave background interpretation. In this work we carry out a temporal analysis of the Fermi light curves for several of the sources mentioned in recent literature by means of a homogeneous procedure and find that, globally, no strong cases for blazar year-long quasi-periodicities can be confirmed. The computed power spectral densities are all essentially consistent with being generated by red-noise only. We further discuss the meaning and the limitations of the present analysis.
We present the results of photometric observations of three TeV blazars, 3C 66A, S5 0954+658 and BL Lacertae, during the period 2013--2017. Our extensive observations were performed in a total of 360 nights which produced $sim$6820 image frames in BV RI bands. We study flux and spectral variability of these blazars on these lengthy timescales. We also examine the optical Spectral Energy Distributions of these blazars, which are crucial in understanding the emission mechanism of long-term variability in blazars. All three TeV blazars exhibited strong flux variability during our observations. The colour variations are mildly chromatic on long timescales for two of them. The nature of the long-term variability of 3C 66A and S5 0954+658 is consistent with a model of a non-thermal variable component that has a continuous injection of relativistic electrons with power law distributions around 4.3 and 4.6, respectively. However, the long-term flux and colour variability of BL Lac suggests that these can arise from modest changes in velocities or viewing angle toward the emission region, leading to variations in the Doppler boosting of the radiation by a factor ~1.2 over the period of these observations.
Among active galactic nuclei, blazars show extreme variability properties. We here investigate the case of the BL Lac object S4 0954+65 with data acquired in 2019-2020 by the Transiting Exoplanet Survey Satellite (TESS) and by the Whole Earth Blazar Telescope (WEBT) Collaboration. The 2-min cadence optical light curves provided by TESS during three observing sectors of nearly one month each, allow us to study the fast variability in great detail. We identify several characteristic short-term time-scales, ranging from a few hours to a few days. However, these are not persistent, as they differ in the various TESS sectors. The long-term photometric and polarimetric optical and radio monitoring undertaken by the WEBT brings significant additional information, revealing that i) in the optical, long-term flux changes are almost achromatic, while the short-term ones are strongly chromatic; ii) the radio flux variations at 37 GHz follow those in the optical with a delay of about three weeks; iii) the range of variation of the polarization degree and angle is much larger in the optical than in the radio band, but the mean polarization angles are similar; iv) the optical long-term variability is characterized by a quasi-periodicity of about one month. We explain the source behaviour in terms of a rotating inhomogeneous helical jet, whose pitch angle can change in time.
A quasi-periodicity has been identified in the strange emission shifts in pulsar B1859+07 and possibly B0919+06. These events, first investigated by Rankin, Rodriguez & Wright in 2006, originally appeared disordered or random, but further mapping as well as Fourier analysis has revealed that they occur on a fairly regular basis of approximately 150 rotation periods in B1859+07 and perhaps some 700 in B0919+06. The events-which we now refer to as swooshes-are not the result of any known type of mode-changing, but rather we find that they are a uniquely different effect, produced by some mechanism other than any known pulse-modulation phenomenon. Given that we have yet to find another explanation for the swooshes, we have appealed to a last resort for periodicities in astrophysics: orbital dynamics in a binary system. Such putative companions would then have semi-major axes comparable to the light cylinder radius for both pulsars. However, in order to resist tidal disruption their densities must be at least some 10$^5$ grams/cm$^3$-therefore white-dwarf cores or something even denser might be indicated.
We perform a full 3D general relativistic magnetohydrodynamical (GRMHD) simulation of an equal-mass, spinning, binary black hole approaching merger, surrounded by a circumbinary disk and with a mini-disk around each black hole. For this purpose, we e volve the ideal GRMHD equations on top of an approximated spacetime for the binary that is valid in every position of space, including the black hole horizons, during the inspiral regime. We use relaxed initial data for the circumbinary disk from a previous long-term simulation, where the accretion is dominated by a $m=1$ overdensity called the lump. We compare our new spinning simulation with a previous non-spinning run, studying how spin influences the mini-disk properties. We analyze the accretion from the inner edge of the lump to the black hole, focusing on the angular momentum budget of the fluid around the mini-disks. We find that mini-disks in the spinning case have more mass over a cycle than the non-spinning case. However, in both cases, we find most of the mass received by the black holes is delivered by the direct plunging of material from the lump. We also analyze the morphology and variability of the electromagnetic fluxes and we find they share the same periodicities of the accretion rate. In the spinning case, we find that the outflows are $8$ times stronger than the non-spinning case. Our results will be useful to understand and produce realistic synthetic light curves and spectra, which can be used in future observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا