ترغب بنشر مسار تعليمي؟ اضغط هنا

Entanglement measures and their properties in quantum field theory

102   0   0.0 ( 0 )
 نشر من قبل Stefan Hollands
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An entanglement measure for a bipartite quantum system is a state functional that vanishes on separable states and that does not increase under separable (local) operations. It is well-known that for pure states, essentially all entanglement measures are equal to the v. Neumann entropy of the reduced state, but for mixed states, this uniqueness is lost. In quantum field theory, bipartite systems are associated with causally disjoint regions. There are no separable (normal) states to begin with when the regions touch each other, so one must leave a finite safety-corridor. Due to this corridor, the normal states of bipartite systems are necessarily mixed, and the v. Neumann entropy is not a good entanglement measure in the above sense. In this paper, we study various entanglement measures which vanish on separable states, do not increase under separable (local) operations, and have other desirable properties. In particular, we study the relative entanglement entropy, defined as the minimum relative entropy between the given state and an arbitrary separable state. We establish rigorous upper and lower bounds in various quantum field theoretic (QFT) models, as well as also model-independent ones. The former include free fields on static spacetime manifolds in general dimensions, or integrable models with factorizing $S$-matrix in 1+1 dimensions. The latter include bounds on ground states in general conformal QFTs, charged states (including charges with braid-group statistics) or thermal states in theories satisfying a nuclearity condition. Typically, the bounds show a divergent behavior when the systems get close to each other--sometimes of the form of a generalized area law--and decay when the systems are far apart. Our main technical tools are of operator algebraic nature.

قيم البحث

اقرأ أيضاً

We formulate a novel approach to decoherence based on neglecting observationally inaccessible correlators. We apply our formalism to a renormalised interacting quantum field theoretical model. Using out-of-equilibrium field theory techniques we show that the Gaussian von Neumann entropy for a pure quantum state increases to the interacting thermal entropy. This quantifies decoherence and thus measures how classical our pure state has become. The decoherence rate is equal to the single particle decay rate in our model. We also compare our approach to existing approaches to decoherence in a simple quantum mechanical model. We show that the entropy following from the perturbative master equation suffers from physically unacceptable secular growth.
We propose a covariant scheme for measuring entanglement on general hypersurfaces in relativistic quantum field theory. For that, we introduce an auxiliary relativistic field, the discretizer, that by locally interacting with the field along a hypers urface, fully swaps the fields and discretizers states. It is shown, that the discretizer can be used to effectively cut-off the fields infinities, in a covariant fashion, and without having to introduce a spatial lattice. This, in turn, provides us an efficient way to evaluate entanglement between arbitrary regions on any hypersurface. As examples, we study the entanglement between complementary and separated regions in 1+1 dimensions, for flat hypersurfaces in Minkowski space, for curved hypersurfaces in Milne space, and for regions on hypersurfaces approaching null-surfaces. Our results show that the entanglement between regions on arbitrary hypersurfaces in 1+1 dimensions depends only on the space-time endpoints of the regions, and not on the shape of the interior. Our results corroborate and extend previous results for flat hypersurfaces.
71 - Andrea Russo 2021
This work is originally a Cambridge Part III essay paper. Quantum complexity arises as an alternative measure to the Fubini metric between two quantum states. Given two states and a set of allowed gates, it is defined as the least complex unitary ope rator capable of transforming one state into the other. Starting with K qubits evolving through a k-local Hamiltonian, it is possible to draw an analogy between the quantum system and an auxiliary classical system. Using the definition of complexity to define a metric for the classical system, it is possible to relate its entropy with the quantum complexity of the K qubits, defining the Second Law of Quantum Complexity. The law states that, if it is not already saturated, the quantum complexity of a system will increase with an overwhelming probability towards its maximum value. In the context of AdS/CFT duality and the ER=EPR conjecture, the growth of the volume of the Einstein Rosen bridge interior is proportional to the quantum complexity of the instantaneous state of the conformal field theory. Therefore, the interior of the wormhole connecting two entangled CFT will grow as a natural consequence of the complexification of the boundary state.
Understanding gravity in the framework of quantum mechanics is one of the great challenges in modern physics. Along this line, a prime question is to find whether gravity is a quantum entity subject to the rules of quantum mechanics. It is fair to sa y that there are no feasible ideas yet to test the quantum coherent behaviour of gravity directly in a laboratory experiment. Here, we introduce an idea for such a test based on the principle that two objects cannot be entangled without a quantum mediator. We show that despite the weakness of gravity, the phase evolution induced by the gravitational interaction of two micron size test masses in adjacent matter-wave interferometers can detectably entangle them even when they are placed far apart enough to keep Casimir-Polder forces at bay. We provide a prescription for witnessing this entanglement, which certifies gravity as a quantum coherent mediator, through simple correlation measurements between two spins: one embedded in each test mass. Fundamentally, the above entanglement is shown to certify the presence of non-zero off-diagonal terms in the coherent state basis of the gravitational field modes.
The symmetry of quantum theory under time reversal has long been a subject of controversy because the transition probabilities given by Borns rule do not apply backward in time. Here, we resolve this problem within a rigorous operational probabilisti c framework. We argue that reconciling time reversal with the probabilistic rules of the theory requires a notion of operation that permits realizations via both pre- and post-selection. We develop the generalized formulation of quantum theory that stems from this approach and give a precise definition of time-reversal symmetry, emphasizing a previously overlooked distinction between states and effects. We prove an analogue of Wigners theorem, which characterizes all allowed symmetry transformations in this operationally time-symmetric quantum theory. Remarkably, we find larger classes of symmetry transformations than those assumed before. This suggests a possible direction for search of extensions of known physics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا