ﻻ يوجد ملخص باللغة العربية
An entanglement measure for a bipartite quantum system is a state functional that vanishes on separable states and that does not increase under separable (local) operations. It is well-known that for pure states, essentially all entanglement measures are equal to the v. Neumann entropy of the reduced state, but for mixed states, this uniqueness is lost. In quantum field theory, bipartite systems are associated with causally disjoint regions. There are no separable (normal) states to begin with when the regions touch each other, so one must leave a finite safety-corridor. Due to this corridor, the normal states of bipartite systems are necessarily mixed, and the v. Neumann entropy is not a good entanglement measure in the above sense. In this paper, we study various entanglement measures which vanish on separable states, do not increase under separable (local) operations, and have other desirable properties. In particular, we study the relative entanglement entropy, defined as the minimum relative entropy between the given state and an arbitrary separable state. We establish rigorous upper and lower bounds in various quantum field theoretic (QFT) models, as well as also model-independent ones. The former include free fields on static spacetime manifolds in general dimensions, or integrable models with factorizing $S$-matrix in 1+1 dimensions. The latter include bounds on ground states in general conformal QFTs, charged states (including charges with braid-group statistics) or thermal states in theories satisfying a nuclearity condition. Typically, the bounds show a divergent behavior when the systems get close to each other--sometimes of the form of a generalized area law--and decay when the systems are far apart. Our main technical tools are of operator algebraic nature.
We formulate a novel approach to decoherence based on neglecting observationally inaccessible correlators. We apply our formalism to a renormalised interacting quantum field theoretical model. Using out-of-equilibrium field theory techniques we show
We propose a covariant scheme for measuring entanglement on general hypersurfaces in relativistic quantum field theory. For that, we introduce an auxiliary relativistic field, the discretizer, that by locally interacting with the field along a hypers
This work is originally a Cambridge Part III essay paper. Quantum complexity arises as an alternative measure to the Fubini metric between two quantum states. Given two states and a set of allowed gates, it is defined as the least complex unitary ope
Understanding gravity in the framework of quantum mechanics is one of the great challenges in modern physics. Along this line, a prime question is to find whether gravity is a quantum entity subject to the rules of quantum mechanics. It is fair to sa
The symmetry of quantum theory under time reversal has long been a subject of controversy because the transition probabilities given by Borns rule do not apply backward in time. Here, we resolve this problem within a rigorous operational probabilisti