ﻻ يوجد ملخص باللغة العربية
We investigate the long-time stability of the Sun-Jupiter-Saturn-Uranus system by considering a planar secular model, that can be regarded as a major refinement of the approach first introduced by Lagrange. Indeed, concerning the planetary orbital revolutions, we improve the classical circular approximation by replacing it with a solution that is invariant up to order two in the masses; therefore, we investigate the stability of the secular system for rather small values of the eccentricities. First, we explicitly construct a Kolmogorov normal form, so as to find an invariant KAM torus which approximates very well the secular orbits. Finally, we adapt the approach that is at basis of the analytic part of the Nekhoroshevs theorem, so as to show that there is a neighborhood of that torus for which the estimated stability time is larger than the lifetime of the Solar System. The size of such a neighborhood, compared with the uncertainties of the astronomical observations, is about ten times smaller.
We perform the study of the stability of the Lorenz system by using the Jacobi stability analysis, or the Kosambi-Cartan-Chern (KCC) theory. The Lorenz model plays an important role for understanding hydrodynamic instabilities and the nature of the t
The Box-Ball System, shortly BBS, was introduced by Takahashi and Satsuma as a discrete counterpart of the KdV equation. Both systems exhibit solitons whose shape and speed are conserved after collision with other solitons. We introduce a slot decomp
We present a variational formulation for the Navier-Stokes-Fourier system based on a free energy Lagrangian. This formulation is a systematic infinite dimensional extension of the variational approach to the thermodynamics of discrete systems using t
We investigate a dynamical system consisting of $N$ particles moving on a $d$-dimensional torus under the action of an electric field $E$ with a Gaussian thermostat to keep the total energy constant. The particles are also subject to stochastic colli
Dynamical systems with $epsilon$ small random perturbations appear in both continuous mechanical motions and discrete stochastic chemical kinetics. The present work provides a detailed analysis of the central limit theorem (CLT), with a time-inhomoge