ﻻ يوجد ملخص باللغة العربية
In this paper, the problem of compressible flow over a thin airfoil located near the ground is studied. A singular integral equation, also known as Possio equation, that relates the pressure jump along the airfoil to its downwash is derived. The derivation of the equation utilizes Laplace transform, Fourier transform, method of images, and theory of Mikhlin multipliers. The existence and uniqueness of solution to the Possio equation is verified for the steady state case and an approximate solution is obtained. The aerodynamic loads are then calculated based on the approximate solution. Moreover, the divergence speed of a continuum wing structure located near the ground is obtained based on the derived expressions for the aerodynamic loads.
We investigate superfluid flow around an airfoil accelerated to a finite velocity from rest. Using simulations of the Gross--Pitaevskii equation we find striking similarities to viscous flows: from production of starting vortices to convergence of ai
Miniature heaters are immersed in flows of quantum fluid and the efficiency of heat transfer is monitored versus velocity, superfluid fraction and time. The fluid is $^4$He helium with a superfluid fraction varied from 71% down to 0% and an imposed v
In this work, the static stability of plates with fixed trailing edges in axial airflow is studied using the framework of Possio integral equation. First, we introduce a new derivation of a Possio integral equation that relates the pressure jump alon
We study theoretically and experimentally how a thin layer of liquid flows along a flexible beam. The flow is modelled using lubrication theory and the substrate is modelled as an elastica which deforms according to the Euler-Bernoulli equation. A co
Laminar flow over a bubble mattress is expected to experience a significant reduction in friction since the individual surfaces of the bubbles are shear-free. However, if the bubbles are sufficiently curved, their protrusion into the fluid and along