ﻻ يوجد ملخص باللغة العربية
We analyze the locus, together with multiplicities, of bad conformal field theories in the compactified moduli space of N=(2,2) superconformal field theories in the context of the generalization of the Batyrev mirror construction using the gauged linear sigma-model. We find this discriminant of singular theories is described beautifully by the GKZ A-determinant but only if we use a noncompact toric Calabi-Yau variety on the A-model side and logarithmic coordinates on the B-model side. The two are related by local mirror symmetry. The corresponding statement for the compact case requires changing multiplicities in the GKZ determinant. We then describe a natural structure for monodromies around components of this discriminant in terms of spherical functors. This can be considered a categorification of the GKZ A-determinant. Each component of the discriminant is naturally associated with a category of massless D-branes.
We study a flat connection defined on the open-closed deformation space of open string mirror symmetry for type II compactifications on Calabi-Yau threefolds with D-branes. We use flatness and integrability conditions to define distinguished flat coo
We describe supersymmetric A-branes and B-branes in open N=(2,2) dynamically gauged nonlinear sigma models (GNLSM), placing emphasis on toric manifold target spaces. For a subset of toric manifolds, these equivariant branes have a mirror description
Localization methods have produced explicit expressions for the sphere partition functions of (2,2) superconformal field theories. The mirror symmetry conjecture predicts an IR duality between pairs of Abelian gauged linear sigma models, a class of w
The main result of the present paper concerns finiteness properties of Floer theoretic invariants on affine log Calabi-Yau varieties $X$. Namely, we show that: (a) the degree zero symplectic cohomology $SH^0(X)$ is finitely generated and is a filte
We discuss a K3 and torus from view point of mirror symmetry. We calculate the periods of the K3 surface and obtain the mirror map, the two-point correlation function, and the prepotential. Then we find there is no instanton correction on K3 (also to