ﻻ يوجد ملخص باللغة العربية
We apply Arvesons non-commutative boundary theory to dilate every Toeplitz-Cuntz-Krieger family of a directed graph $G$ to a full Cuntz-Krieger family for $G$. We do this by describing all representations of the Toeplitz algebra $mathcal{T}(G)$ that have unique extension when restricted to the tensor algebra $mathcal{T}_+(G)$. This yields an alternative proof to a result of Katsoulis and Kribs that the $C^*$-envelope of $mathcal T_+(G)$ is the Cuntz-Krieger algebra $mathcal O(G)$. We then generalize our dilation results further, to the context of colored directed graphs, by investigating free products of operator algebras. These generalizations rely on results of independent interest on complete injectivity and a characterization of representations with the unique extension property for free products of operator algebras.
Motivated by the theory of Cuntz-Krieger algebras we define and study $ C^ast $-algebras associated to directed quantum graphs. For classical graphs the $ C^ast $-algebras obtained this way can be viewed as free analogues of Cuntz-Krieger algebras, a
We construct a covariant functor from the topological torus bundles to the so-called Cuntz-Krieger algebras; the functor maps homeomorphic bundles into the stably isomorphic Cuntz-Krieger algebras. It is shown, that the K-theory of the Cuntz-Krieger
In this article, we present a new method to study relative Cuntz-Krieger algebras for higher-rank graphs. We only work with edges rather than paths of arbitrary degrees. We then use this method to simplify the existing results about relative Cuntz-Kr
Strengthening classical results by Bratteli and Kishimoto, we prove that two subshifts of finite type are shift equivalent in the sense of Williams if and only if their Cuntz-Krieger algebras are equivariantly stably isomorphic. This provides an equi
Let $q = e^{i theta} in mathbb{T}$ (where $theta in mathbb{R}$), and let $u,v$ be $q$-commuting unitaries, i.e., $u$ and $v$ are unitaries such that $vu = quv$. In this paper we find the optimal constant $c = c_theta$ such that $u,v$ can be dilated t