ﻻ يوجد ملخص باللغة العربية
Users on Twitter are commonly identified by their profile names. These names are used when directly addressing users on Twitter, are part of their profile page URLs, and can become a trademark for popular accounts, with people referring to celebrities by their real name and their profile name, interchangeably. Twitter, however, has chosen to not permanently link profile names to their corresponding user accounts. In fact, Twitter allows users to change their profile name, and afterwards makes the old profile names available for other users to take. In this paper, we provide a large-scale study of the phenomenon of profile name reuse on Twitter. We show that this phenomenon is not uncommon, investigate the dynamics of profile name reuse, and characterize the accounts that are involved in it. We find that many of these accounts adopt abandoned profile names for questionable purposes, such as spreading malicious content, and using the profile names popularity for search engine optimization. Finally, we show that this problem is not unique to Twitter (as other popular online social networks also release profile names) and argue that the risks involved with profile-name reuse outnumber the advantages provided by this feature.
Active Galactic Nuclei (AGN) are energetic astrophysical sources powered by accretion onto supermassive black holes in galaxies, and present unique observational signatures that cover the full electromagnetic spectrum over more than twenty orders of
We evaluate named entity representations of BERT-based NLP models by investigating their robustness to replacements from the same typed class in the input. We highlight that on several tasks while such perturbations are natural, state of the art trai
Name disambiguation is a key and also a very tough problem in many online systems such as social search and academic search. Despite considerable research, a critical issue that has not been systematically studied is disambiguation on the fly -- to c
A flaw in QA evaluation is that annotations often only provide one gold answer. Thus, model predictions semantically equivalent to the answer but superficially different are considered incorrect. This work explores mining alias entities from knowledg
There is a growing body of work that proposes methods for mitigating bias in machine learning systems. These methods typically rely on access to protected attributes such as race, gender, or age. However, this raises two significant challenges: (1) p