ترغب بنشر مسار تعليمي؟ اضغط هنا

Variation in GMC Association Properties Across Bars, Spiral Arms, Inter-Arms, and Circumnuclear Region of M100 (NGC 4321) Extracted from ALMA Observations

107   0   0.0 ( 0 )
 نشر من قبل Hsi-An Pan
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Hsi-An Pan




اسأل ChatGPT حول البحث

We study the physical properties of giant molecular cloud associations (GMAs) in M100 (NGC 4321) using the ALMA Science Verification feathered (12-m+ACA) data in 12CO (1-0). To examine the environmental dependence of GMA properties, GMAs are classified based on their locations in the various environments as circumnuclear ring (CNR), bar, spiral, and inter-arm GMAs. The CNR GMAs are massive and compact, while the inter-arm GMAs are diffuse with low surface density. GMA mass and size are strongly correlated, as suggested by Larson (1981). However, the diverse power-law index of the relation implies that the GMA properties are not uniform among the environments. The CNR and bar GMAs show higher velocity dispersion than those in other environments. We find little evidence for a correlation between GMA velocity dispersion and size, which indicates that the GMAs are in diverse dynamical states. Indeed, the virial parameter of GMAs spans nearly two orders of magnitude. Only the spiral GMAs are in general self-gravitating. Star formation activity of the GMAs decreases in order over the CNR, spiral, bar, and the inter-arm GMAs. The diverse GMA and star formation properties in different environments lead to variations in the Kennicutt-Schmidt relation. A combination of multiple mechanisms or gas phase change is necessary to explain the observed slopes. Comparisons of GMA properties acquired with the use of the 12-m-array observations with those from the feathered data are also presented. The results show that the missing flux and extended emission cannot be neglected for the study of environmental dependence.



قيم البحث

اقرأ أيضاً

We present sub-kpc-scale mapping of the 870 $mu$m ALMA continuum emission in six luminous ($L_{rm IR}~sim~5~times10^{12}$ L$_{odot}$) submillimeter galaxies (SMGs) from the ALESS survey of the Extended Chandra Deep Field South. Our high-fidelity 0.07 $$-resolution imaging ($sim$500 pc) reveals robust evidence for structures with deconvolved sizes of $lesssim$0.5-1 kpc embedded within (dominant) exponential dust disks. The large-scale morphologies of the structures within some of the galaxies show clear curvature and/or clump-like structures bracketing elongated nuclear emission, suggestive of bars, star-forming rings, and spiral arms. In this interpretation, the ratio of the `ring and `bar radii (1.9$pm$0.3) agrees with that measured for such features in local galaxies. These potential spiral/ring/bar structures would be consistent with the idea of tidal disturbances, with their detailed properties implying flat inner rotation curves and Toomre-unstable disks (Q<1). The inferred one-dimensional velocity dispersions ($sigma_{rm r}lesssim$ 70-160 km s$^{-1}$) are marginally consistent with the limits implied if the sizes of the largest structures are comparable to the Jeans length. We create maps of the star formation rate density ($Sigma_{rm SFR}$) on $sim$500 pc scales and show that the SMGs are able to sustain a given (galaxy-averaged) $Sigma_{rm SFR}$ over much larger physical scales than local (ultra-)luminous infrared galaxies. However, on 500 pc scales, they do not exceed the Eddington limit set by radiation pressure on dust. If confirmed by kinematics, the potential presence of non-axisymmetric structures would provide a means for net angular momentum loss and efficient star formation, helping to explain the very high star formation rates measured in SMGs.
We present for the first time a two-dimensional velocity field of the central region of the grand-design spiral galaxy NGC 5248, at 0.9 arcsec spatial resolution. The H-alpha velocity field is dominated by circular rotation. While no systematic strea ming motions are seen in the area of the nuclear grand-design spiral or the circumnuclear ring, the amplitude of residual velocities, after subtracting a model circular velocity field, reaches 20 km/s in projection. The rotation curve levels out at around 140 km/s, after a well-resolved and rather shallow rise. We have generated an analytical model for the nuclear spiral and fitted it to our observations to obtain estimates of the pattern speed of the spiral and the sound speed in the central region of NGC 5248. Our results are consistent with a low pattern speed, suggesting that the nuclear spiral rotates with the same rate as the main spiral structure in NGC 5248, and thus that the spiral structure is coupled from scales of a few hundred parsecs to several kiloparsecs. We have also compared the observed structure and kinematics between the nuclear regions of NGC 5248 and M100. Several similarities and differences are discussed, including the location of the peak emission regions on major and minor axes, and the spiral arm streaming motions. We find no kinematic evidence for a presence of a nuclear bar in NGC 5248.
63 - P. Frick , R. Stepanov , R. Beck 2015
Isotropic and anisotropic wavelet transforms are used to decompose the images of the spiral galaxy M83 in various tracers to quantify structures in a range of scales from 0.2 to 10 kpc. We used radio polarization observations at {lambda}6 cm and 13 c m obtained with the VLA, Effelsberg and ATCA telescopes and APEX sub-mm observations at 870 {mu}m, which are first published here, together with maps of the emission of warm dust, ionized gas, molecular gas, and atomic gas. The spatial power spectra are similar for the tracers of dust, gas, and total magnetic field, while the spectra of the ordered magnetic field are significantly different. The wavelet cross-correlation between all material tracers and total magnetic field is high, while the structures of the ordered magnetic field are poorly correlated with those of other tracers. -- The magnetic field configuration in M83 contains pronounced magnetic arms. Some of them are displaced from the corresponding material arms, while others overlap with the material arms. The magnetic field vectors at {lambda}6 cm are aligned with the outer material arms, while significant deviations occur in the inner arms and in the bar region, possibly due to non-axisymmetric gas flows. Outside the bar region, the typical pitch angles of the material and magnetic spiral arms are very close to each other at about 10{deg}. The typical pitch angle of the magnetic field vectors is about 20{deg} larger than that of the material spiral arms. One of the main magnetic arms in M83 is displaced from the gaseous arms, while the other main arm overlaps a gaseous arm. We propose that a regular spiral magnetic field generated by a mean-field dynamo is compressed in material arms and partly aligned with them. The interaction of galactic dynamo action with a transient spiral pattern is a promising mechanism for producing such complicated spiral patterns as in M83.
This letter studies the formation of azimuthal metallicity variations in the disks of spiral galaxies in the absence of initial radial metallicity gradients. Using high-resolution $N$-body simulations, we model composite stellar discs, made of kinema tically cold and hot stellar populations, and study their response to spiral arm perturbations. We find that, as expected, disk populations with different kinematics respond differently to a spiral perturbation, with the tendency for dynamically cooler populations to show a larger fractional contribution to spiral arms than dynamically hotter populations. By assuming a relation between kinematics and metallicity, namely the hotter the population, the more metal-poor it is, this differential response to the spiral arm perturbations naturally leads to azimuthal variations in the mean metallicity of stars in the simulated disk. Thus, azimuthal variations in the mean metallicity of stars across a spiral galaxy are not necessarily a consequence of the reshaping, by radial migration, of an initial radial metallicity gradient. They indeed arise naturally also in stellar disks which have initially only a negative vertical metallicity gradient.
Relations between star formation rates along the spiral arms and the velocities of gas inflow into the arms in grand-design galaxy NGC 628 were studied. We found that the radial distribution of average star formation rate in individual star formation regions in regular spiral arms correlates with the velocity of gas inflow into the spiral arms. Both distributions have maxima at a galactocentric distance of 4.5-5 kpc. There are no correlations between the radial distributions of average star formation rate in star formation regions in spiral arms and outside spiral arms in the main disc. We also did not find a correlation between the radial distribution of average star formation rate in star formation regions in spiral arms and HI column density.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا