ترغب بنشر مسار تعليمي؟ اضغط هنا

Statically Checking Web API Requests in JavaScript

230   0   0.0 ( 0 )
 نشر من قبل Annie Ying
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Many JavaScript applications perform HTTP requests to web APIs, relying on the request URL, HTTP method, and request data to be constructed correctly by string operations. Traditional compile-time error checking, such as calling a non-existent method in Java, are not available for checking whether such requests comply with the requirements of a web API. In this paper, we propose an approach to statically check web API requests in JavaScript. Our approach first extracts a requests URL string, HTTP method, and the corresponding request data using an inter-procedural string analysis, and then checks whether the request conforms to given web API specifications. We evaluated our approach by checking whether web API requests in JavaScript files mined from GitHub are consistent or inconsistent with publicly available API specifications. From the 6575 requests in scope, our approach determined whether the requests URL and HTTP method was consistent or inconsistent with web API specifications with a precision of 96.0%. Our approach also correctly determined whether extracted request data was consistent or inconsistent with the data requirements with a precision of 87.9% for payload data and 99.9% for query data. In a systematic analysis of the inconsistent cases, we found that many of them were due to errors in the client code. The here proposed checker can be integrated with code editors or with continuous integration tools to warn programmers about code containing potentially erroneous requests.



قيم البحث

اقرأ أيضاً

Modern applications increasingly interact with web APIs -- reusable components, deployed and operated outside the application, and accessed over the network. Their existence, arguably, spurs application innovations, making it easy to integrate data o r functionalities. While previous work has analyzed the ecosystem of web APIs and their design, little is known about web API quality at runtime. This gap is critical, as qualities including availability, latency, or provider security preferences can severely impact applications and user experience. In this paper, we revisit a 3-month, geo-distributed benchmark of popular web APIs, originally performed in 2015. We repeat this benchmark in 2018 and compare results from these two benchmarks regarding availability and latency. We furthermore introduce new results from assessing provider security preferences, collected both in 2015 and 2018, and results from our attempts to reach out to API providers with the results from our 2015 experiments. Our extensive experiments show that web API qualities vary 1.) based on the geo-distribution of clients, 2.) during our individual experiments, and 3.) between the two experiments. Our findings provide evidence to foster the discussion around web API quality, and can act as a basis for the creation of tools and approaches to mitigate quality issues.
Nowadays, invoking third party code increasingly involves calling web services via their web APIs, as opposed to the more traditional scenario of downloading a library and invoking the librarys API. However, there are also new challenges for develope rs calling these web APIs. In this paper, we highlight a broad set of these challenges and argue for resulting opportunities for software engineering research to support developers in consuming web APIs. We outline two specific research threads in this context: (1) web API specification curation, which enables us to know the signatures of web APIs, and (2) static analysis that is capable of extracting URLs, HTTP methods etc. of web API calls. Furthermore, we present new work on how we combine (1) and (2) to provide IDE support for application developers consuming web APIs. As web APIs are used broadly, research in supporting the consumption of web APIs offers exciting opportunities.
Web API specifications are machine-readable descriptions of APIs. These specifications, in combination with related tooling, simplify and support the consumption of APIs. However, despite the increased distribution of web APIs, specifications are rar e and their creation and maintenance heavily relies on manual efforts by third parties. In this paper, we propose an automatic approach and an associated tool called D2Spec for extracting specifications from web API documentation pages. Given a seed online documentation page on an API, D2Spec first crawls all documentation pages on the API, and then uses a set of machine learning techniques to extract the base URL, path templates, and HTTP methods, which collectively describe the endpoints of an API. We evaluated whether D2Spec can accurately extract endpoints from documentation on 120 web APIs. The results showed that D2Spec achieved a precision of 87.5% in identifying base URLs, a precision of 81.3% and a recall of 80.6% in generating path templates, and a precision of 84.4% and a recall of 76.2% in extracting HTTP methods. In addition, we found that D2Spec was useful when applied to APIs with pre-existing API specifications: D2Spec revealed many inconsistencies between web API documentation and their corresponding publicly available specifications. Thus, D2Spec can be used by web API providers to keep documentation and specifications in synchronization.
Pull requests are a key part of the collaborative software development and code review process today. However, pull requests can also slow down the software development process when the reviewer(s) or the author do not actively engage with the pull r equest. In this work, we design an end-to-end service, Nudge, for accelerating overdue pull requests towards completion by reminding the author or the reviewer(s) to engage with their overdue pull requests. First, we use models based on effort estimation and machine learning to predict the completion time for a given pull request. Second, we use activity detection to reduce false positives. Lastly, we use dependency determination to understand the blocker of the pull request and nudge the appropriate actor(author or reviewer(s)). We also do a correlation analysis to understand the statistical relationship between the pull request completion times and various pull request and developer related attributes. Nudge has been deployed on 147 repositories at Microsoft since 2019. We do a large scale evaluation based on the implicit and explicit feedback we received from sending the Nudge notifications on 8,500 pull requests. We observe significant reduction in completion time, by over 60%, for pull requests which were nudged thus increasing the efficiency of the code review process and accelerating the pull request progression.
104 - V. Stray , N.B. Moe , M. Mikalsen 2021
In globally distributed projects, virtual teams are often partially dispersed. One common setup occurs when several members from one company work with a large outsourcing vendor based in another country. Further, the introduction of the popular BizDe vOps concept has increased the necessity to cooperate across departments and reduce the age-old disconnection between the business strategy and technical development. Establishing a good collaboration in partially distributed BizDevOps teams requires extensive collaboration and communication techniques. Nowadays, a common approach is to rely on collaboration through pull requests and frequent communication on Slack. To investigate barriers for pull requests in distributed teams, we examined an organization located in Scandinavia where cross-functional BizDevOps teams collaborated with off-site team members in India. Data were collected by conducting 14 interviews, observing 23 entire days with the team, and observing 37 meetings. We found that the pull-request approach worked very well locally but not across sites. We found barriers such as domain complexity, different agile processes (timeboxed vs. flow-based development), and employee turnover. Using an intellectual capital lens on our findings, we discuss barriers and positive and negative effects on the success of the pull-request approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا