ﻻ يوجد ملخص باللغة العربية
We present the first world-wide inter-laboratory comparison of small-angle X-ray scattering (SAXS) for nanoparticle sizing. The measurands in this comparison are the mean particle radius, the width of the size distribution and the particle concentration. The investigated sample consists of dispersed silver nanoparticles, surrounded by a stabilizing polymeric shell of poly(acrylic acid). The silver cores dominate the X-ray scattering pattern, leading to the determination of their radii size distribution using: i) Glatters Indirect Fourier Transformation method, ii) classical model fitting using SASfit and iii) a Monte Carlo fitting approach using McSAS. The application of these three methods to the collected datasets produces consistent mean number- and volume-weighted core radii of R$_n$ = 2.76 nm and R$_v$ = 3.20 nm, respectively. The corresponding widths of the log-normal radii distribution of the particles were $sigma_n$ = 0.65 nm and $sigma_v$ = 0.71 nm. The particle concentration determined using this method was 3.00 $pm$ 0.38 g/L (4.20 $pm$ 0.73 $times$ 10$^{-6}$ mol/L). We show that the results are slightly biased by the choice of data evaluation procedure, but that no substantial differences were found between the results from data measured on a very wide range of instruments: the participating laboratories at synchrotron SAXS beamlines, commercial and home-made instruments were all able to provide data of high quality. Our results demonstrate that SAXS is a qualified method for revealing particle size distributions in the sub-20 nm region (at least), out of reach for most other analytical methods.
Monte-Carlo (MC) methods, based on random updates and the trial-and-error principle, are well suited to retrieve particle size distributions from small-angle scattering patterns of dilute solutions of scatterers. The size sensitivity of size determin
The in situ measurement of the particle size distribution (PSD) of a suspension of particles presents huge challenges. Various effects from the process could introduce noise to the data from which the PSD is estimated. This in turn could lead to the
In the last years, researchers have realized the difficulties of fitting power-law distributions properly. These difficulties are higher in Zipfs systems, due to the discreteness of the variables and to the existence of two representations for these systems, i.e., t
Recent studies have shown that a system composed from several randomly interdependent networks is extremely vulnerable to random failure. However, real interdependent networks are usually not randomly interdependent, rather a pair of dependent nodes
Deviations from Brownian motion leading to anomalous diffusion are ubiquitously found in transport dynamics, playing a crucial role in phenomena from quantum physics to life sciences. The detection and characterization of anomalous diffusion from the