ترغب بنشر مسار تعليمي؟ اضغط هنا

Fermi/LAT detection of a transient gamma-ray flare in the vicinity of the binary star DG CVn

153   0   0.0 ( 0 )
 نشر من قبل Alan Loh
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Solar flares are regularly detected by the Large Area Telescope (LAT) on board the Fermi satellite, however no gamma-ray emission from other stellar eruptions has ever been captured. The Swift detection in April 2014 of a powerful outburst originating from DG CVn, with associated optical and radio emissions, enticed us to search for possible 0.1-100 GeV emission from this flaring nearby binary star using the Fermi/LAT. No gamma-ray emission is detected from DG CVn in 2014, but we report a significant gamma-ray excess in November 2012, at a position consistent with that of the binary. There are no reports of contemporary flaring at other wavelengths from DG CVn or any other source within the error circle of the gamma-ray source. We argue that the gamma-ray flare is more likely to have been associated with a background blazar than with DG CVn and identify a candidate for follow-up study.



قيم البحث

اقرأ أيضاً

Particle acceleration in massive star forming regions can proceed via a large variety of possible emission scenarios, including high-energy gamma-ray production in the colliding wind zone of the massive Wolf-Rayet binary (here WR 20a and WR 121a), co llective wind scenarios, diffusive shock acceleration at the boundaries of wind-blown bubbles in the stellar cluster, and outbreak phenomena from hot stellar winds into the interstellar medium. In view of the recent Fermi-LAT detection of HESS J1023-575 (in the vicinity of Westerlund 2), we examine another very high energy (VHE) gamma-ray source, HESS J1848-0145 (in the vicinity of W43), possibly associated with a massive star cluster. Considering multi-wavelength data, in particular TeV gamma-rays, we examine the available evidence that the gamma-ray emission coincident with Westerlund 2 and W43 could originate in particles accelerated by the above-mentioned mechanisms in massive star clusters.
On 2014 April 23, the Swift satellite detected a gamma-ray superflare from the nearby star system DG CVn. This system comprises a M-dwarf binary with extreme properties: it is very young and at least one of the components is a very rapid rotator. The gamma-ray superflare is one of only a handful detected by Swift in a decade. As part of our AMI-LA Rapid Response Mode, ALARRM, we automatically slewed to this target, were taking data at 15 GHz within six minutes of the burst, and detected a bright (~100 mJy) radio flare. This is the earliest detection of bright, prompt, radio emission from a high energy transient ever made with a radio telescope, and is possibly the most luminous incoherent radio flare ever observed from a red dwarf star. An additional bright radio flare, peaking at around 90 mJy, occurred around one day later, and there may have been further events between 0.1-1 days when we had no radio coverage. The source subsequently returned to a quiescent level of 2-3 mJy on a timescale of about 4 days. Although radio emission is known to be associated with active stars, this is the first detection of large radio flares associated with a gamma ray superflare, and demonstrates both feasibility and scientific importance of rapid response modes on radio telescopes.
We report the detection of GeV gamma-ray emission from the molecular cloud complex that surrounds the supernova remnant (SNR) W44 using the Large Area Telescope (LAT) onboard Fermi. While the previously reported gamma-ray emission from SNR W44 is lik ely to arise from the dense radio-emitting filaments within the remnant, the gamma-ray emission that appears to come from the surrounding molecular cloud complex can be ascribed to the cosmic rays (CRs) that have escaped from W44. The non-detection of synchrotron radio emission associated with the molecular cloud complex suggests the decay of neutral pi mesons produced in hadronic collisions as the gamma-ray emission mechanism. The total kinetic energy channeled into the escaping CRs is estimated to be (0.3--3)x10^{50} erg, in broad agreement with the conjecture that SNRs are the main sources of Galactic CRs.
We present a detailed investigation of the $gamma$-ray emission in the vicinity of the supernova remnant (SNR) W28 (G6.4$-$0.1) observed by the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope. We detected significant $gamma$-ra y emission spatially coincident with TeV sources HESS J1800$-$240A, B, and C, located outside the radio boundary of the SNR. Their spectra in the 2-100 GeV band are consistent with the extrapolation of the power-law spectra of the TeV sources. We also identified a new source of GeV emission, dubbed Source W, which lies outside the boundary of TeV sources and coincides with radio emission from the western part of W28. All of the GeV $gamma$-ray sources overlap with molecular clouds in the velocity range from 0 to 20 km s$^{-1}$. Under the assumption that the $gamma$-ray emission towards HESS J1800-240A, B, and C comes from $pi^0$ decay due to the interaction between the molecular clouds and cosmic rays (CRs) escaping from W28, they can be naturally explained by a single model in which the CR diffusion coefficient is smaller than the theoretical expectation in the interstellar space. The total energy of the CRs escaping from W28 is constrained through the same modeling to be larger than $sim$ 2 $times$ 10$^{49}$ erg. The emission from Source W can also be explained with the same CR escape scenario.
We report the discovery of extended gamma-ray emission measured by the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope in the region of the supernova remnant (SNR) HB3 (G132.7+1.3) and the W3 HII complex adjacent to the southea st of the remnant. W3 is spatially associated with bright 12CO (J=1-0) emission. The gamma-ray emission is spatially correlated with this gas and the SNR. We discuss the possibility that gamma rays originate in interactions between particles accelerated in the SNR and interstellar gas or radiation fields. The decay of neutral pions produced in nucleon-nucleon interactions between accelerated hadrons and interstellar gas provides a reasonable explanation for the gamma-ray emission. The emission from W3 is consistent with irradiation of the CO clouds by the cosmic rays accelerated in HB3.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا