ﻻ يوجد ملخص باللغة العربية
We present calculations of the one-loop vacuum polarization correction (Uehling potential) for the three-body problem in the NRQED formalism. The case of one-electron molecular systems is considered. Numerical results of the vacuum polarization contribution at m$alpha$7 and higher orders for the fundamental transitions (v = 0, L = 0) $rightarrow$ (v = 1, L = 0) in the H2+ and HD+ molecular ions are presented and compared with calculations performed in the adiabatic approximation. The residual uncertainty from this contribution on the transition frequencies is shown to be of a few tens of Hz.
We present calculations of the one-loop vacuum polarization contribution (Uehling potential) for the two-center problem in the NRQED formalism. The cases of hydrogen molecular ions ($Z_1=Z_2=1$) as well as antiprotonic helium ($Z_1=2$, $Z_2=-1$) are
In order to describe few-body scattering in the case of the Coulomb interaction, an approach based on splitting the reaction potential into a finite range part and a long range tail part is presented. The solution to the Schrodinger equation for the
In this paper we compute the one-loop chiral logarithmic corrections to all O(p^4) counterterms in the three site Higgsless model. The calculation is performed using the background field method for both the chiral- and gauge-fields, and using Landau
We show that the dipole-dipole interaction between three identical Rydberg atoms can give rise to bound trimer states. The microscopic origin of these states is fundamentally different from Efimov physics. Two stable trimer configurations exist where
We reconsider the homogeneous Faddeev-Merkuriev integral equations for three-body Coulombic systems with attractive Coulomb interactions and point out that the resonant solutions are contaminated with spurious resonances. The spurious solutions are r