ﻻ يوجد ملخص باللغة العربية
We present an investigation of clumpy galaxies in the Hubble Ultra Deep Field at 0.5 $leq z leq$ 1.5 in the rest-frame far-ultraviolet (FUV) using HST WFC3 broadband imaging in F225W, F275W, and F336W. An analysis of 1,404 galaxies yields 209 galaxies that host 403 kpc-scale clumps. These host galaxies appear to be typical star-forming galaxies, with an average of 2 clumps per galaxy and reaching a maximum of 8 clumps. We measure the photometry of the clumps, and determine the mass, age, and star formation rates (SFR) utilizing the SED-fitting code FAST. We find that clumps make an average contribution of 19% to the total rest-frame FUV flux of their host galaxy. Individually, clumps contribute a median of 5% to the host galaxy SFR and an average of $sim$4% to the host galaxy mass, with total clump contributions to the host galaxy stellar mass ranging widely from less than 1% up to 93%. Clumps in the outskirts of galaxies are typically younger, with higher star formation rates, than clumps in the inner regions. The results are consistent with clump migration theories in which clumps form through violent gravitational instabilities in gas-rich turbulent disks, eventually migrate toward the center of the galaxies, and coalesce into the bulge.
We use combined South Pole Telescope (SPT)+Planck temperature maps to analyze the circumgalactic medium (CGM) encompassing 138,235 massive, quiescent 0.5 $leq$ z $leq$ 1.5 galaxies selected from data from the Dark Energy Survey (DES) and Wide-Field I
Using the CANDELS photometric catalogs for the HST/ACS and WFC3, we identified massive evolved galaxies at $3 < z < 4.5$, employing three different selection methods. We find the comoving number density of these objects to be $sim 2 times 10^{-5}$ an
Determining the spatial distribution and intrinsic physical properties of neutral hydrogen on cosmological scales is one of the key goals of next-generation radio surveys. We use the EAGLE galaxy formation simulations to assess the properties of damp
We systematically determine ground-state and saddle-point shapes and masses for 1305 heavy and superheavy nuclei with $Z=98-126$ and $N=134-192$, including odd-$A$ and odd-odd systems. From these, we derive static fission barrier heights, one- and tw
Using the near-IR spectroscopy of the MOSFIRE Deep Evolution Field (MOSDEF) survey, we investigate the role of local environment in the gas-phase metallicity of galaxies. The local environment measurements are derived from accurate and uniformly calc