ﻻ يوجد ملخص باللغة العربية
Forward-looking ground-penetrating radar (FLGPR) has recently been investigated as a remote sensing modality for buried target detection (e.g., landmines). In this context, raw FLGPR data is beamformed into images and then computerized algorithms are applied to automatically detect subsurface buried targets. Most existing algorithms are supervised, meaning they are trained to discriminate between labeled target and non-target imagery, usually based on features extracted from the imagery. A large number of features have been proposed for this purpose, however thus far it is unclear which are the most effective. The first goal of this work is to provide a comprehensive comparison of detection performance using existing features on a large collection of FLGPR data. Fusion of the decisions resulting from processing each feature is also considered. The second goal of this work is to investigate two modern feature learning approaches from the object recognition literature: the bag-of-visual-words and the Fisher vector for FLGPR processing. The results indicate that the new feature learning approaches outperform existing methods. Results also show that fusion between existing features and new features yields little additional performance improvements.
Substantial research has been devoted to the development of algorithms that automate buried threat detection (BTD) with ground penetrating radar (GPR) data, resulting in a large number of proposed algorithms. One popular algorithm GPR-based BTD, orig
We address the problem of robot localization using ground penetrating radar (GPR) sensors. Current approaches for localization with GPR sensors require a priori maps of the systems environment as well as access to approximate global positioning (GPS)
Multistatic ground-penetrating radar (GPR) signals can be imaged tomographically to produce three-dimensional distributions of image intensities. In the absence of objects of interest, these intensities can be considered to be estimates of clutter. T
The three electromagnetic properties appearing in Maxwells equations are dielectric permittivity, electrical conductivity and magnetic permeability. The study of point diffractors in a homogeneous, isotropic, linear medium suggests the use of logarit
This research proposes a Ground Penetrating Radar (GPR) data processing method for non-destructive detection of tunnel lining internal defects, called defect segmentation. To perform this critical step of automatic tunnel lining detection, the method