ﻻ يوجد ملخص باللغة العربية
Hazes are common in known planet atmospheres, and geochemical evidence suggests early Earth occasionally supported an organic haze with significant environmental and spectral consequences. The UV spectrum of the parent star drives organic haze formation through methane photochemistry. We use a 1D photochemical-climate model to examine production of fractal organic haze on Archean Earth-analogs in the habitable zonesof several stellar types: the modern and early Sun, AD Leo (M3.5V), GJ 876 (M4V), $epsilon$ Eridani (K2V), and $sigma$ Bootis (F2V). For Archean-like atmospheres, planets orbiting stars with the highest UV fluxes do not form haze due to the formation of photochemical oxygen radicals that destroy haze precursors. Organic hazes impact planetary habitability via UV shielding and surface cooling, but this cooling is minimized around M dwarfs whose energy is emitted at wavelengths where organic hazes are relatively transparent. We generate spectra to test the detectability of haze. For 10 transits of a planet orbiting GJ 876 observed by the James Webb Space Telescope, haze makes gaseous absorption features at wavelengths $<$ 2.5 $mu$m 2-10$sigma$ shallower compared to a haze-free planet, and methane and carbon dioxide are detectable at $>$5$sigma$. A haze absorption feature can be detected at 5$sigma$ near 6.3 $mu$m, but higher signal-to-noise is needed to distinguish haze from adjacent absorbers. For direct imaging of a planet at 10 parsecs using a coronagraphic 10-meter class ultraviolet-visible-near infrared telescope, a UV-blue haze absorption feature would be strongly detectable at $>$12$sigma$ in 200 hours.
The current progress in the detection of terrestrial type exoplanets has opened a new avenue in the characterization of exoplanetary atmospheres and in the search for biosignatures of life with the upcoming ground-based and space missions. To specify
Next-generation missions designed to detect biosignatures on exoplanets will also be capable of placing constraints on the presence of technosignatures (evidence for technological life) on these same worlds. Here, I estimate the detectability of nigh
The detectability of planetesimal impacts on imaged exoplanets can be measured using Jupiter during the 1994 comet Shoemaker-Levy 9 events as a proxy. By integrating the whole planet flux with and without impact spots, the effect of the impacts at wa
Like the magnetised planets in our Solar System, magnetised exoplanets should emit strongly at radio wavelengths. Radio emission directly traces the planetary magnetic fields and radio detections can place constraints on the physical parameters of th
Tidal Disruption Events (TDEs) are characterized by the emission of a short burst of high-energy radiation. We analyze the cumulative impact of TDEs on galactic habitability using the Milky Way as a proxy. We show that X-rays and extreme ultraviolet