ترغب بنشر مسار تعليمي؟ اضغط هنا

Pale Orange Dots: The Impact of Organic Haze on the Habitability and Detectability of Earthlike Exoplanets

110   0   0.0 ( 0 )
 نشر من قبل Edward Schwieterman
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Hazes are common in known planet atmospheres, and geochemical evidence suggests early Earth occasionally supported an organic haze with significant environmental and spectral consequences. The UV spectrum of the parent star drives organic haze formation through methane photochemistry. We use a 1D photochemical-climate model to examine production of fractal organic haze on Archean Earth-analogs in the habitable zonesof several stellar types: the modern and early Sun, AD Leo (M3.5V), GJ 876 (M4V), $epsilon$ Eridani (K2V), and $sigma$ Bootis (F2V). For Archean-like atmospheres, planets orbiting stars with the highest UV fluxes do not form haze due to the formation of photochemical oxygen radicals that destroy haze precursors. Organic hazes impact planetary habitability via UV shielding and surface cooling, but this cooling is minimized around M dwarfs whose energy is emitted at wavelengths where organic hazes are relatively transparent. We generate spectra to test the detectability of haze. For 10 transits of a planet orbiting GJ 876 observed by the James Webb Space Telescope, haze makes gaseous absorption features at wavelengths $<$ 2.5 $mu$m 2-10$sigma$ shallower compared to a haze-free planet, and methane and carbon dioxide are detectable at $>$5$sigma$. A haze absorption feature can be detected at 5$sigma$ near 6.3 $mu$m, but higher signal-to-noise is needed to distinguish haze from adjacent absorbers. For direct imaging of a planet at 10 parsecs using a coronagraphic 10-meter class ultraviolet-visible-near infrared telescope, a UV-blue haze absorption feature would be strongly detectable at $>$12$sigma$ in 200 hours.

قيم البحث

اقرأ أيضاً

The current progress in the detection of terrestrial type exoplanets has opened a new avenue in the characterization of exoplanetary atmospheres and in the search for biosignatures of life with the upcoming ground-based and space missions. To specify the conditions favorable for the origin, development and sustainment of life as we know it in other worlds, we need to understand the nature of astrospheric, atmospheric and surface environments of exoplanets in habitable zones around G-K-M dwarfs including our young Sun. Global environment is formed by propagated disturbances from the planet-hosting stars in the form of stellar flares, coronal mass ejections, energetic particles, and winds collectively known as astrospheric space weather. Its characterization will help in understanding how an exoplanetary ecosystem interacts with its host star, as well as in the specification of the physical, chemical and biochemical conditions that can create favorable and/or detrimental conditions for planetary climate and habitability along with evolution of planetary internal dynamics over geological timescales. A key linkage of (astro) physical, chemical, and geological processes can only be understood in the framework of interdisciplinary studies with the incorporation of progress in heliophysics, astrophysics, planetary and Earth sciences. The assessment of the impacts of host stars on the climate and habitability of terrestrial (exo)planets will significantly expand the current definition of the habitable zone to the biogenic zone and provide new observational strategies for searching for signatures of life. The major goal of this paper is to describe and discuss the current status and recent progress in this interdisciplinary field and to provide a new roadmap for the future development of the emerging field of exoplanetary science and astrobiology.
97 - Thomas G. Beatty 2021
Next-generation missions designed to detect biosignatures on exoplanets will also be capable of placing constraints on the presence of technosignatures (evidence for technological life) on these same worlds. Here, I estimate the detectability of nigh tside city lights on habitable, Earth-like, exoplanets around nearby stars using direct-imaging observations from the proposed LUVOIR and HabEx observatories. I use data from the Soumi National Polar-orbiting Partnership satellite to determine the surface flux from city lights at the top of Earths atmosphere, and the spectra of commercially available high-power lamps to model the spectral energy distribution of the city lights. I consider how the detectability scales with urbanization fraction: from Earths value of 0.05%, up to the limiting case of an ecumenopolis -- or planet-wide city. I then calculate the minimum detectable urbanization fraction using 300 hours of observing time for generic Earth-analogs around stars within 8 pc of the Sun, and for nearby known potentially habitable planets. Though Earth itself would not be detectable by LUVOIR or HabEx, planets around M-dwarfs close to the Sun would show detectable signals from city lights for urbanization levels of 0.4% to 3%, while city lights on planets around nearby Sun-like stars would be detectable at urbanization levels of $gtrsim10%$. The known planet Proxima b is a particularly compelling target for LUVOIR A observations, which would be able to detect city lights twelve times that of Earth in 300 hours, an urbanization level that is expected to occur on Earth around the mid-22nd-century. An ecumenopolis, or planet-wide city, would be detectable around roughly 50 nearby stars by both LUVOIR and HabEx, and a survey of these systems would place a $1,sigma$ upper limit of $lesssim2%$ on the frequency of ecumenopolis planets in the Solar neighborhood assuming no detections.
The detectability of planetesimal impacts on imaged exoplanets can be measured using Jupiter during the 1994 comet Shoemaker-Levy 9 events as a proxy. By integrating the whole planet flux with and without impact spots, the effect of the impacts at wa velengths from 2 - 4 microns is revealed. Jupiters reflected light spectrum in the near-infrared is dominated by its methane opacity including a deep band at 2.3 microns. After the impact, sunlight that would have normally been absorbed by the large amount of methane in Jupiters atmosphere was instead reflected by the cometary material from the impacts. As a result, at 2.3 microns, where the planet would normally have low reflectivity, it brightened substantially and stayed brighter for at least a month.
Like the magnetised planets in our Solar System, magnetised exoplanets should emit strongly at radio wavelengths. Radio emission directly traces the planetary magnetic fields and radio detections can place constraints on the physical parameters of th ese features. Large comparative studies of predicted radio emission characteristics for the known population of exoplanets help to identify what physical parameters could be key for producing bright, observable radio emission. Since the last comparative study, many thousands of exoplanets have been discovered. We report new estimates for the radio flux densities and maximum emission frequencies for the current population of known exoplanets orbiting pre-main sequence and main-sequence stars with spectral types F-M. The set of exoplanets predicted to produce observable radio emission are Hot Jupiters orbiting young stars. The youth of these system predicts strong stellar magnetic fields and/or dense winds, which are key for producing bright, observable radio emission. We use a new all-sky circular polarisation Murchison Widefield Array survey to place sensitive limits on 200 MHz emission from exoplanets, with $3sigma$ values ranging from 4.0 - 45.0 mJy. Using a targeted Giant Metre Wave Radio Telescope observing campaign, we also report a $3sigma$ upper limit of 4.5 mJy on the radio emission from V830 Tau b, the first Hot Jupiter to be discovered orbiting a pre-main sequence star. Our limit is the first to be reported for the low-frequency radio emission from this source.
78 - E. Pacetti , A. Balbi , M. Lingam 2020
Tidal Disruption Events (TDEs) are characterized by the emission of a short burst of high-energy radiation. We analyze the cumulative impact of TDEs on galactic habitability using the Milky Way as a proxy. We show that X-rays and extreme ultraviolet (XUV) radiation emitted during TDEs can cause hydrodynamic escape and instigate biological damage. By taking the appropriate variables into consideration, such as the efficiency of atmospheric escape and distance from the Galactic center, we demonstrate that the impact of TDEs on galactic habitability is comparable to that of Active Galactic Nuclei. In particular, we show that planets within distances of $sim 0.1$-$1$ kpc could lose Earth-like atmospheres over the age of the Earth, and that some of them might be subject to biological damage once every $gtrsim 10^4$ yrs. We conclude by highlighting potential ramifications of TDEs and argue that they should be factored into future analyses of inner galactic habitability.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا