ﻻ يوجد ملخص باللغة العربية
Facility location queries identify the best locations to set up new facilities for providing service to its users. Majority of the existing works in this space assume that the user locations are static. Such limitations are too restrictive for planning many modern real-life services such as fuel stations, ATMs, convenience stores, cellphone base-stations, etc. that are widely accessed by mobile users. The placement of such services should, therefore, factor in the mobility patterns or trajectories of the users rather than simply their static locations. In this work, we introduce the TOPS (Trajectory-Aware Optimal Placement of Services) query that locates the best k sites on a road network. The aim is to optimize a wide class of objective functions defined over the user trajectories. We show that the problem is NP-hard and even the greedy heuristic with an approximation bound of (1-1/e) fails to scale on urban-scale datasets. To overcome this challenge, we develop a multi-resolution clustering based indexing framework called NetClus. Empirical studies on real road network trajectory datasets show that NetClus offers solutions that are comparable in terms of quality with those of the greedy heuristic, while having practical response times and low memory footprints. Additionally, the NetClus framework can absorb dynamic updates in mobility patterns, handle constraints such as site-costs and capacity, and existing services, thereby providing an effective solution for modern urban-scale scenarios.
Trajectory similarity computation is a fundamental component in a variety of real-world applications, such as ridesharing, road planning, and transportation optimization. Recent advances in mobile devices have enabled an unprecedented increase in the
Much like on-premises systems, the natural choice for running database analytics workloads in the cloud is to provision a cluster of nodes to run a database instance. However, analytics workloads are often bursty or low volume, leaving clusters idle
Single-source and top-$k$ SimRank queries are two important types of similarity search in graphs with numerous applications in web mining, social network analysis, spam detection, etc. A plethora of techniques have been proposed for these two types o
Top-k query processing finds a list of k results that have largest scores w.r.t the user given query, with the assumption that all the k results are independent to each other. In practice, some of the top-k results returned can be very similar to eac
Graphs are fundamental data structures and have been employed for centuries to model real-world systems and phenomena. Random walk with restart (RWR) provides a good proximity score between two nodes in a graph, and it has been successfully used in m