ﻻ يوجد ملخص باللغة العربية
We introduce a general decomposition of the stress tensor for incompressible fluids in terms of its components on a tensorial basis adapted to the local flow conditions, which include extensional flows, simple shear flows, and any type of mixed flows. Such a basis is determined solely by the symmetric part of the velocity gradient and allows for a straightforward interpretation of the non-Newtonian response in any local flow conditions. In steady homogeneous flows, the material functions that represent the components of the stress on the adapted basis generalize and complete the classical set of viscometric functions used to characterize the response in simple shear flows. Such a general decomposition of the stress is effective in coherently organizing and interpreting rheological data from laboratory measurements and computational studies in non-viscometric steady flows of great importance for practical applications. The decomposition of the stress in terms with clearly distinct roles is also useful in developing constitutive models.
Marine microorganisms must cope with complex flow patterns and even turbulence as they navigate the ocean. To survive they must avoid predation and find efficient energy sources. A major difficulty in analysing possible survival strategies is that th
Geometric confinements play an important role in many physical and biological processes and significantly affect the rheology and behavior of colloidal suspensions at low Reynolds numbers. On the basis of the linear Stokes equations, we investigate t
Laminar flow over a bubble mattress is expected to experience a significant reduction in friction since the individual surfaces of the bubbles are shear-free. However, if the bubbles are sufficiently curved, their protrusion into the fluid and along
We study flow driven through a finite-length planar rigid channel by a fixed upstream flux, where a segment of one wall is replaced by a pre-stressed elastic beam subject to uniform external pressure. The steady and unsteady systems are solved using
Channel formation and branching is widely seen in physical systems where movement of fluid through a porous structure causes the spatiotemporal evolution of the medium in response to the flow, in turn causing flow pathways to evolve. We provide a sim