ﻻ يوجد ملخص باللغة العربية
We identify a novel regime of soliton-plasma interactions in which high-intensity ultrashort pulses of intermediate soliton order undergo coherent plasma-induced fission. Experimental results obtained in gas-filled hollow-core photonic crystal fibers are supported by rigorous numerical simulations. The cumulative blueshift of higher-order input solitons with ionizing intensities results in pulse splitting before the ultimate self-compression point, leading to the generation of robust pulse pairs with PHz bandwidths. The novel dynamics closes the gap between plasma-induced adiabatic soliton compression and modulational instability.
Supercontinuum generation in Kerr media has become a staple of nonlinear optics. It has been celebrated for advancing the understanding of soliton propagation as well as its many applications in a broad range of fields. Coherent spectral broadening o
High harmonic generation (HHG) in crystals has revealed a wealth of perspectives such as all-optical mapping of the electronic band structure, ultrafast quantum information and the creation of novel all-solid-state attosecond sources. Significant eff
It is well known that direct observation of interference and diffraction pattern in the intensity distribution requires a spatially coherent source. Optical waves emitted from portions beyond the coherence area possess statistically independent phase
Temporal cavity solitons in ring microresonators provide broad and controllable generation of frequency combs with applications in frequency standards and precise atomic clocks. Three level media in the {Lambda} configuration inside microresonators d
High-Q microresonator has been suggested a promising platform for optical frequency comb generation, via dissipative soliton formation. To achieve a higher Q and obtain the necessary anomalous dispersion, $Si_3N_4$ microresonators made of multi-mode