ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic Origin of Black Hole Winds Across the Mass Scale

108   0   0.0 ( 0 )
 نشر من قبل Keigo Fukumura
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Black hole accretion disks appear to produce invariably plasma outflows that result in blue-shifted absorption features in their spectra. The X-ray absorption-line properties of these outflows are quite diverse, ranging in velocity from non-relativistic ($sim 300$ km/sec) to sub-relativistic ($sim 0.1c$ where $c$ is the speed of light) and a similarly broad range in the ionization states of the wind plasma. We report here that semi-analytic, self-similar magnetohydrodynamic (MHD) wind models that have successfully accounted for the X-ray absorber properties of supermassive black holes, also fit well the high-resolution X-ray spectrum of the accreting stellar-mass black hole, GRO J1655-40. This provides an explicit theoretical argument of their MHD origin (aligned with earlier observational claims) and supports the notion of a universal magnetic structure of the observed winds across all known black hole sizes.



قيم البحث

اقرأ أيضاً

We present a study of the mechanical power generated by both winds and jets across the black hole mass scale. We begin with the study of ionized X-ray winds and present a uniform analysis using Chandra grating spectra. The high quality grating spectr a facilitate the characterization of the outflow velocity, ionization and column density of the absorbing gas. We find that the kinetic power of the winds scales with increasing bolometric luminosity as log(L_wind) propto (1.58 pm 0.07) log(L_Bol). This means that SMBH may be more efficient than stellar-mass black holes in launching winds. In addition, the simplicity of the scaling may suggest common driving mechanisms across the mass scale. For comparison, we next examine jet production, estimating jet power based on the energy required to inflate local bubbles. The jet relation is log(L_Jet)propto (1.18pm0.24) log(L_Bol). The energetics of the bubble associated with Cygnus X-1 are particularly difficult to determine, and the bubble could be a background SNR. If we exclude Cygnus X-1, then the jets follow a consistent relation to the winds within errors but with a higher normalization, log(L_Jet) propto (1.34 pm 0.50) log(L_Bol). The formal consistency in the wind and jet scaling relations suggests that a common launching mechanism may drive both flows; magnetic processes are viable possibilities. We also examine winds with especially high velocities, v > 0.01c. These ultra-fast outflows tend to resemble the jets more than the winds, indicating we may be observing a regime in which winds become jets. This study allows for the total power from black hole accretion, both mechanical and radiative, to be characterized in a simple manner and suggests a possible connection between winds and jets. Finally, we find at low Eddington fractions, the jet power is dominant, and at high Eddington fractions the wind power is dominant.
At the end of its life, a very massive star is expected to collapse into a black hole. The recent detection of an 85 Msun black hole from the gravitational wave event GW 190521 appears to present a fundamental problem as to how such heavy black holes exist above the approximately 50 Msun pair-instability limit where stars are expected to be blown to pieces with no remnant left. Using MESA, we show that for stellar models with non-extreme assumptions, 90..100 Msun stars at reduced metallicity (Z/Zsun < 0.1) can produce blue supergiant progenitors with core masses sufficiently small to remain below the fundamental pair-instability limit, yet at the same time lose an amount of mass via stellar winds that is small enough to end up in the range of an impossible 85 Msun black hole. The two key points are the proper consideration of core overshooting and stellar wind physics with an improved scaling of mass loss with iron (Fe) contents characteristic for the host galaxy metallicity. Our modelling provides a robust scenario that not only doubles the maximum black hole mass set by pair instability, but also allows us to probe the maximum stellar black hole mass as a function of metallicity and Cosmic time in a physically sound framework.
Observations of dwarf galaxies suggest the presence of large-scale magnetic fields. However the size and slow rotation of these galaxies appear insufficient to support a mean-field dynamo action to excite such fields. Here we suggest a new mechanism to explain large-scale magnetic fields in galaxies that are too small to support mean-field dynamo action. The key idea is that we do not identify large-scale and mean magnetic fields. In our scenario the the magnetic structures originate from a small-scale dynamo which produces small-scale magnetic field in the galactic disc and a galactic wind that transports this field into the galactic halo where the large turbulent diffusion increases the scale and order of the field. As a result, the magnetic field becomes large-scale; however its mean value remains vanishing in a strict sense. We verify the idea by numerical modelling of two distinct simplified configurations, a thin disc model using the no-$z$ approximation, and an axisymmetric model using cylindrical $r,z$ coordinates. Each of these allows reduction of the problem to two spatial dimensions. Taken together, the models support the proposition that the general trends will persist in a fully 3D model. We demonstrate that a pronounced large-scale pattern can develop in the galactic halo for a wide choice of the dynamo governing parameters. We believe that our mechanism can be relevant to explaining the presence of the fields observed in the halos of dwarf galaxies. We emphasize that detailed modelling of the proposed scenario needs 3D simulations, and adjustment to the specific dynamo governing parameters of dwarf galaxies.
A small cluster of massive stars residing in the Galactic center, collectively known as IRS13E, is of special interest due to its close proximity to Sgr A* and the possibility that an embedded intermediate-mass black hole (IMBH) binds its member star s. It has been suggested that colliding winds from two member stars, both classified as Wolf-Rayet type, are responsible for the observed X-ray, infrared and radio emission from IRS13E. We have conducted an in-depth study of the X-ray spatial, temporal and spectral properties of IRS13E, based on 5.6 Ms of ultra-deep Chandra observations obtained over 20 years. These X-ray observations show no significant evidence for source variability. We have also explored the kinematics of the cluster members, using Keck near-infrared imaging and spectroscopic data on a 14-yr baseline that considerably improve the accuracy of stars proper motions. The observations are interpreted using 3-dimensional hydrodynamical simulations of colliding winds tailored to match the physical conditions of IRS13E, leading us to conclude that the observed X-ray spectrum and morphology can be well explained by the colliding wind scenario, in the meantime offering no support for the presence of a putative IMBH. An IMBH more massive than a few $10^3{rm~M_odot}$ is also strongly disfavored by the stellar kinematics.
Black hole binaries show equatorial disc winds at high luminosities, which apparently disappear during the spectral transition to the low/hard state. This is also where the radio jet appears, motivating speculation that both wind and jet are driven b y different configurations of the same magnetic field. However, these systems must also have thermal winds, as the outer disc is clearly irradiated.We develop a predictive model of the absorption features from thermal winds, based on pioneering work of Begelman et al 1983. We couple this to a realistic model of the irradiating spectrum as a function of luminosity to predict the entire wind evolution during outbursts. We show that the column density of the thermal wind scales roughly with luminosity, and does not shut off at the spectral transition, though its visibility will be affected by the abrupt change in ionising spectrum. We re-analyse the data from H1743-322 which most constrains the difference in wind across the spectral transition and show that these are consistent with the thermal wind models.We include simple corrections for radiation pressure, which allows stronger winds to be launched from smaller radii. These winds become optically thick around Eddington, which may even explain the exceptional wind seen in one observation of GRO J1655-40. These data can instead be fit by magnetic wind models, but similar winds are not seen in this or other systems at similar luminosities. Hence we conclude that the majority (perhaps all) current data can be explained by thermal or thermal-radiative winds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا