ﻻ يوجد ملخص باللغة العربية
In this article we review the present status of alpha clustering in nuclear systems. First of all, an important aspect is condensation in nuclear matter. Second, the alpha container model, recently been proposed by Tohsaki-Horiuchi-Schuck-Roepke (THSR), will be outlined and the ensuing condensate aspect of the Hoyle state at 7.65 MeV in 12C will be investigated in some detail. After 15 years since the proposal of the alpha condensation concept a critical assessment of this idea will be given. Alpha gas states in other nuclei like 16O and 13C will be considered. The THSR wave function can also describe configurations of one alpha particle on top of a doubly magic core. The cases of 20Ne and 212Po will be investigated.
A comparison of pairing properties in cuprates and nuclear matter is briefly discussed. Quartet (alpha-particle) condensation is a very important aspect of nuclear physics. The physics of the Hoyle state in 12 C will be outlined and its crucial role for the existence of life on earth explained.
When the density of a nuclear system is decreased, homogeneous states undergo the so-called Mott transition towards clusterised states, e.g. alpha clustering, both in nuclei and in nuclear matter. Here we investigate such a quantum phase transition (
The Bose-Einstein condensation of $alpha$ partciles in the multicomponent environment of dilute, warm nuclear matter is studied. We consider the cases of matter composed of light clusters with mass numbers $Aleq 4$ and matter that in addition these c
The fragmentation of quasi-projectiles from the nuclear reaction $^{40}Ca$+$^{12}C$ at 25 MeV/nucleon was used to produce excited states candidates to $alpha$-particle condensation. The methodology relies on high granularity 4$pi$ detection coupled t
The 4He total photoabsorption cross section is calculated with the realistic nucleon-nucleon potential Argonne V18 and the three-nucleon force (3NF) Urbana IX. Final state interaction is included rigorously via the Lorentz Integral Transform method.