ترغب بنشر مسار تعليمي؟ اضغط هنا

An assessment of the low-lying excitation energies and triplet instabilities of organic molecules with an ab initio Bethe-Salpeter equation approach

123   0   0.0 ( 0 )
 نشر من قبل Tonatiuh Rangel Gordillo
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The accurate prediction of singlet and triplet excitation energies is of significant fundamental interest and is critical for many applications. An area of intense research, most calculations of singlet and triplet energies use time-dependent density functional theory (TDDFT) in conjunction with an approximate exchange-correlation functional. In this work, we examine and critically assess an alternative method for predicting low-lying neutral excitations with similar computational cost, the ab initio Bethe-Salpeter equation (BSE) approach, and compare results against high-accuracy wavefunction-based methods. We consider singlet and triplet excitations of 27 prototypical organic molecules, including members of Thiels set, the acene series, and several aromatic hydrocarbons exhibiting charge-transfer-like excitations. Analogous to its impact in TDDFT, we find that the Tamm-Dancoff approximation (TDA) overcomes triplet instabilities in the BSE approach, improving both triplet and singlet energetics relatively to higher level theories. Finally, we find that BSE-TDA calculations built on good DFT starting points, such as those utilizing optimally-tuned range-separated hybrid functionals, can yield accurate singlet and triplet excitation energies for gas-phase organic molecules.



قيم البحث

اقرأ أيضاً

The Bethe-Salpeter equation (BSE) based on GW quasiparticle levels is a successful approach for calculating the optical gaps and spectra of solids and also for predicting the neutral excitations of small molecules. We here present an all-electron imp lementation of the GW+BSE formalism for molecules, using numeric atom-centered orbital (NAO) basis sets. We present benchmarks for low-lying excitation energies for a set of small organic molecules, denoted in the literature as Thiels set. Literature reference data based on Gaussian-type orbitals are reproduced to about one meV precision for the molecular benchmark set, when using the same GW quasiparticle energies and basis sets as the input to the BSE calculations. For valence correlation consistent NAO basis sets, as well as for standard NAO basis sets for ground state density-functional theory with extended augmentation functions, we demonstrate excellent convergence of the predicted low-lying excitations to the complete basis set limit. A simple and affordable augmented NAO basis set denoted tier2+aug2 is recommended as a particularly efficient formulation for production calculations. We finally demonstrate that the same convergence properties also apply to linear-response time-dependent density functional theory within the NAO formalism.
We present an efficient implementation of the Bethe-Salpeter equation (BSE) method for obtaining core-level spectra including x-ray absorption (XAS), x-ray emission (XES), and both resonant and non-resonant inelastic x-ray scattering spectra (N/RIXS) . Calculations are based on density functional theory (DFT) electronic structures generated either by abinit or Quantumespresso, both plane-wave basis, pseudopotential codes. This electronic structure is improved through the inclusion of a GW self energy. The projector augmented wave technique is used to evaluate transition matrix elements between core-level and band states. Final two-particle scattering states are obtained with the NIST core-level BSE solver (NBSE). We have previously reported this implementation, which we refer to as ocean (Obtaining Core Excitations from Ab initio electronic structure and NBSE) [Phys. Rev. B 83, 115106 (2011)]. Here, we present additional efficiencies that enable us to evaluate spectra for systems ten times larger than previously possible; containing up to a few thousand electrons. These improvements include the implementation of optimal basis functions that reduce the cost of the initial DFT calculations, more complete parallelization of the screening calculation and of the action of the BSE Hamiltonian, and various memory reductions. Scaling is demonstrated on supercells of SrTiO_3 and example spectra for the organic light emitting molecule Tris-(8-hydroxyquinoline)aluminum (Alq_3 ) are presented. The ability to perform large-scale spectral calculations is particularly advantageous for investigating dilute or non-periodic systems such as doped materials, amorphous systems, or complex nano-structures.
QMCPACK is an open source quantum Monte Carlo package for ab-initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Car lo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater-Jastrow type trial wave functions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performance computing architectures, including multicore central processing unit (CPU) and graphical processing unit (GPU) systems. We detail the programs capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://www.qmcpack.org .
In the development of highly efficient photovoltaic cells, solid perovskite systems have demonstrated unprecedented promise, with the figure of merit exceeding nineteen percent of efficiency. In this paper, we investigate the optical and vibrational properties of organometallic cubic perovskite CH3NH3PbI3 using first-principles calculations. For accurate theoretical description, we go beyond conventional density functional theory (DFT), and calculated optical conductivity using relativist quasi-particle (GW) correction. Incorporating these many-body effects, we further solve Bethe-Salpeter equations (BSE) for excitons, and found enhanced optical conductivity near the gap edge. Due to the presence of organic methylammonium cations near the center of the perovskite cell, the system is sensitive to low energy vibrational modes. We estimate the phonon modes of CH3NH3PbI3 using small displacement approach, and further calculate the infrared absorption (IR) spectra. Qualitatively, our calculations of low-energy phonon frequencies are in good agreement with our terahertz measurements. Therefore, for both energy scales (around 2 eV and 0-20 meV), our calculations reveal the importance of many-body effects and their contributions to the desirable optical properties in the cubic organometallic perovskites system.
We present a method to compute optical spectra and exciton binding energies of molecules and solids based on the solution of the Bethe-Salpeter equation (BSE) and the calculation of the screened Coulomb interaction in finite field. The method does no t require the explicit evaluation of dielectric matrices nor of virtual electronic states, and can be easily applied without resorting to the random phase approximation. In addition it utilizes localized orbitals obtained from Bloch states using bisection techniques, thus greatly reducing the complexity of the calculation and enabling the efficient use of hybrid functionals to obtain single particle wavefunctions. We report exciton binding energies of several molecules and absorption spectra of condensed systems of unprecedented size, including water and ice samples with hundreds of atoms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا