ﻻ يوجد ملخص باللغة العربية
We revisit the computation of the 1-loop string correction to the latitude minimal surface in $AdS_5 times S^5$ representing 1/4 BPS Wilson loop in planar $cal N$=4 SYM theory previously addressed in arXiv:1512.00841 and arXiv:1601.04708. We resolve the problem of matching with the subleading term in the strong coupling expansion of the exact gauge theory result (derived previously from localization) using a different method to compute determinants of 2d string fluctuation operators. We apply perturbation theory in a small parameter (angle of the latitude) corresponding to an expansion near the $AdS_2$ minimal surface representing 1/2 BPS circular Wilson loop. This allows us to compute the corrections to the heat kernels and zeta-functions of the operators in terms of the known heat kernels on $AdS_2$. We apply the same method also to two other examples of Wilson loop surfaces: generalized cusp and $k$-wound circle.
In the present paper, which is a sequel to arXiv:1001:4018, we compute the one-loop correction to the energy of pulsating string solutions in AdS_5 x S^5. We show that, as for rigid spinning string elliptic solutions, the fluctuation operators for pu
We study the four point function of the superconformal primary of the stress-tensor multiplet in four dimensional $mathcal{N}=4$ Super Yang Mills, at large t Hooft coupling and in a large $N$ expansion. This observable is holographically dual to four
We study non-planar correlators in ${cal N}=4$ super-Yang-Mills in Mellin space. We focus in the stress tensor four-point correlator to order $1/N^4$ and in a strong coupling expansion. This can be regarded as the genus-one four-point graviton amplit
We initiate the computation of the 2-loop quantum AdS_5 x S^5 string corrections on the example of a certain string configuration in S^5 related by an analytic continuation to a folded rotating string in AdS_5 in the ``long string limit. The 2-loop t
We compute the one-loop world-sheet correction to partition function of $AdS_5 times S^5$ superstring that should be representing $k$-fundamental circular Wilson loop in planar limit. The 2d metric of the minimal surface ending on $k$-wound circle at