ترغب بنشر مسار تعليمي؟ اضغط هنا

Trimming the Independent Fat: Sufficient Statistics, Mutual Information, and Predictability from Effective Channel States

68   0   0.0 ( 0 )
 نشر من قبل James P. Crutchfield
 تاريخ النشر 2017
والبحث باللغة English




اسأل ChatGPT حول البحث

One of the most fundamental questions one can ask about a pair of random variables X and Y is the value of their mutual information. Unfortunately, this task is often stymied by the extremely large dimension of the variables. We might hope to replace each variable by a lower-dimensional representation that preserves the relationship with the other variable. The theoretically ideal implementation is the use of minimal sufficient statistics, where it is well-known that either X or Y can be replaced by their minimal sufficient statistic about the other while preserving the mutual information. While intuitively reasonable, it is not obvious or straightforward that both variables can be replaced simultaneously. We demonstrate that this is in fact possible: the information Xs minimal sufficient statistic preserves about Y is exactly the information that Ys minimal sufficient statistic preserves about X. As an important corollary, we consider the case where one variable is a stochastic process past and the other its future and the present is viewed as a memoryful channel. In this case, the mutual information is the channel transmission rate between the channels effective states. That is, the past-future mutual information (the excess entropy) is the amount of information about the future that can be predicted using the past. Translating our result about minimal sufficient statistics, this is equivalent to the mutual information between the forward- and reverse-time causal states of computational mechanics. We close by discussing multivariate extensions to this use of minimal sufficient statistics.



قيم البحث

اقرأ أيضاً

Entropy-based measures are an important tool for studying human gaze behavior under various conditions. In particular, gaze transition entropy (GTE) is a popular method to quantify the predictability of fixation transitions. However, GTE does not acc ount for temporal dependencies beyond two consecutive fixations and may thus underestimate a scanpaths actual predictability. Instead, we propose to quantify scanpath predictability by estimating the active information storage (AIS), which can account for dependencies spanning multiple fixations. AIS is calculated as the mutual information between a processes multivariate past state and its next value. It is thus able to measure how much information a sequence of past fixations provides about the next fixation, hence covering a longer temporal horizon. Applying the proposed approach, we were able to distinguish between induced observer states based on estimated AIS, providing first evidence that AIS may be used in the inference of user states to improve human-machine interaction.
A central result that arose in applying information theory to the stochastic thermodynamics of nonlinear dynamical systems is the Information-Processing Second Law (IPSL): the physical entropy of the universe can decrease if compensated by the Shanno n-Kolmogorov-Sinai entropy change of appropriate information-carrying degrees of freedom. In particular, the asymptotic-rate IPSL precisely delineates the thermodynamic functioning of autonomous Maxwellian demons and information engines. How do these systems begin to function as engines, Landauer erasers, and error correctors? Here, we identify a minimal, inescapable transient dissipation engendered by physical information processing not captured by asymptotic rates, but critical to adaptive thermodynamic processes such as found in biological systems. A component of transient dissipation, we also identify an implementation-dependent cost that varies from one physical substrate to another for the same information processing task. Applying these results to producing structured patterns from a structureless information reservoir, we show that retrodictive generators achieve the minimal costs. The results establish the thermodynamic toll imposed by a physical systems structure as it comes to optimally transduce information.
We study dynamical reversibility in stationary stochastic processes from an information theoretic perspective. Extending earlier work on the reversibility of Markov chains, we focus on finitary processes with arbitrarily long conditional correlations . In particular, we examine stationary processes represented or generated by edge-emitting, finite-state hidden Markov models. Surprisingly, we find pervasive temporal asymmetries in the statistics of such stationary processes with the consequence that the computational resources necessary to generate a process in the forward and reverse temporal directions are generally not the same. In fact, an exhaustive survey indicates that most stationary processes are irreversible. We study the ensuing relations between model topology in different representations, the processs statistical properties, and its reversibility in detail. A processs temporal asymmetry is efficiently captured using two canonical unifilar representations of the generating model, the forward-time and reverse-time epsilon-machines. We analyze example irreversible processes whose epsilon-machine presentations change size under time reversal, including one which has a finite number of recurrent causal states in one direction, but an infinite number in the opposite. From the forward-time and reverse-time epsilon-machines, we are able to construct a symmetrized, but nonunifilar, generator of a process---the bidirectional machine. Using the bidirectional machine, we show how to directly calculate a processs fundamental information properties, many of which are otherwise only poorly approximated via process samples. The tools we introduce and the insights we offer provide a better understanding of the many facets of reversibility and irreversibility in stochastic processes.
Conditional Mutual Information (CMI) is a measure of conditional dependence between random variables X and Y, given another random variable Z. It can be used to quantify conditional dependence among variables in many data-driven inference problems su ch as graphical models, causal learning, feature selection and time-series analysis. While k-nearest neighbor (kNN) based estimators as well as kernel-based methods have been widely used for CMI estimation, they suffer severely from the curse of dimensionality. In this paper, we leverage advances in classifiers and generative models to design methods for CMI estimation. Specifically, we introduce an estimator for KL-Divergence based on the likelihood ratio by training a classifier to distinguish the observed joint distribution from the product distribution. We then show how to construct several CMI estimators using this basic divergence estimator by drawing ideas from conditional generative models. We demonstrate that the estimates from our proposed approaches do not degrade in performance with increasing dimension and obtain significant improvement over the widely used KSG estimator. Finally, as an application of accurate CMI estimation, we use our best estimator for conditional independence testing and achieve superior performance than the state-of-the-art tester on both simulated and real data-sets.
Mutual information is a widely-used information theoretic measure to quantify the amount of association between variables. It is used extensively in many applications such as image registration, diagnosis of failures in electrical machines, pattern r ecognition, data mining and tests of independence. The main goal of this paper is to provide an efficient estimator of the mutual information based on the approach of Al Labadi et. al. (2021). The estimator is explored through various examples and is compared to its frequentist counterpart due to Berrett et al. (2019). The results show the good performance of the procedure by having a smaller mean squared error.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا