ﻻ يوجد ملخص باللغة العربية
Accessing hadronic form factors at large momentum transfers has traditionally presented a challenge for lattice QCD simulations. Here we demonstrate how a novel implementation of the Feynman-Hellmann method can be employed to calculate hadronic form factors in lattice QCD at momenta much higher than previously accessible. Our simulations are performed on a single set of gauge configurations with three flavours of degenerate mass quarks corresponding to $m_pi approx 470 text{ MeV}$. We are able to determine the electromagnetic form factors of the pion and nucleon up to approximately $6 text{ GeV}^2$, with results for $G_E/G_M$ in the proton agreeing well with experimental results.
Lattice QCD can provide a direct determination of meson electromagnetic form factors, making predictions for upcoming experiments at Jefferson Lab. The form factors are a reflection of the bound-state nature of the meson and so these calculations giv
We evaluate the strange nucleon electromagnetic form factors using an ensemble of gauge configurations generated with two degenerate maximally twisted mass clover-improved fermions with mass tuned to approximately reproduce the physical pion mass. In
We evaluate the isovector nucleon electromagnetic form factors in quenched and full QCD on the lattice using Wilson fermions. In the quenched theory we use a lattice of spatial size 3 fm at beta=6.0 enabling us to reach low momentum transfers and a l
The electromagnetic form factors of the proton and the neutron are computed within lattice QCD using simulations with quarks masses fixed to their physical values. Both connected and disconnected contributions are computed. We analyze two new ensembl
Results on the electromagnetic form factors of the nucleon using twisted mass fermion configurations are presented. These include a gauge field ensemble simulated with two degenerate light quarks yielding a pion mass of around 130 MeV, as well as two