ﻻ يوجد ملخص باللغة العربية
One of the main aims in phylogenetics is the estimation of ancestral sequences based on present-day data like, for instance, DNA alignments. One way to estimate the data of the last common ancestor of a given set of species is to first reconstruct a phylogenetic tree with some tree inference method and then to use some method of ancestral state inference based on that tree. One of the best-known methods both for tree inference as well as for ancestral sequence inference is Maximum Parsimony (MP). In this manuscript, we focus on this method and on ancestral state inference for fully bifurcating trees. In particular, we investigate a conjecture published by Charleston and Steel in 1995 concerning the number of species which need to have a particular state, say $a$, at a particular site in order for MP to unambiguously return $a$ as an estimate for the state of the last common ancestor. We prove the conjecture for all even numbers of character states, which is the most relevant case in biology. We also show that the conjecture does not hold in general for odd numbers of character states, but also present some positive results for this case.
We examine a mathematical question concerning the reconstruction accuracy of the Fitch algorithm for reconstructing the ancestral sequence of the most recent common ancestor given a phylogenetic tree and sequence data for all taxa under consideration
In phylogenetic studies, biologists often wish to estimate the ancestral discrete character state at an interior vertex $v$ of an evolutionary tree $T$ from the states that are observed at the leaves of the tree. A simple and fast estimation method -
One of the main aims of phylogenetics is to reconstruct the enquote{Tree of Life}. In this respect, different methods and criteria are used to analyze DNA sequences of different species and to compare them in order to derive the evolutionary relation
In this paper we investigate mathematical questions concerning the reliability (reconstruction accuracy) of Fitchs maximum parsimony algorithm for reconstructing the ancestral state given a phylogenetic tree and a character. In particular, we conside
Tuffley and Steel (1997) proved that Maximum Likelihood and Maximum Parsimony methods in phylogenetics are equivalent for sequences of characters under a simple symmetric model of substitution with no common mechanism. This result has been widely cit