ترغب بنشر مسار تعليمي؟ اضغط هنا

SMC X-3: the closest ultraluminous X-ray source powered by a neutron star with non-dipole magnetic field

70   0   0.0 ( 0 )
 نشر من قبل Sergey Tsygankov
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic field of accreting neutron stars determines their overall behaviour including the maximum possible luminosity. Some models require an above-average magnetic field strength (> 10^13 G) in order to explain super-Eddington mass accretion rate in the recently discovered class of pulsating ultraluminous X-ray sources (ULX). The peak luminosity of SMC X-3 during its major outburst in 2016-2017 reached ~2.5x10^39 erg/s comparable to that in ULXs thus making this source the nearest ULX-pulsar. SMC X-3 belongs to the class of transient X-ray pulsars with Be optical companions, and exhibited a giant outburst in July 2016 - February 2017. The source has been observed during the entire outburst with the Swift/XRT and Fermi/GBM telescopes, as well as the NuSTAR observatory. Collected data allowed us to estimate the magnetic field strength of the neutron star in SMC X-3 using several independent methods. Spin evolution of the source during and between the outbursts and the luminosity of the transition to so-called propeller regime in the range of (0.3 - 7)x10^35 erg/s imply relatively weak dipole field of (1 - 5)x10^12 G. On the other hand, there is also evidence for much stronger field in the immediate vicinity of the neutron star surface. In particular, transition from super- to sub-critical accretion regime associated with cease of the accretion column, absence of cyclotron absorption features in the broadband X-ray spectrum of the source obtained with NuSTAR and very high peak luminosity favor an order of magnitude stronger field. This discrepancy makes SMC X-3 a good candidate to posses significant non-dipolar components of the field, and an intermediate source between classical X-ray pulsars and accreting magnetars which may constitute an appreciable fraction of ULX population.



قيم البحث

اقرأ أيضاً

132 - M. Bachetti 2014
Ultraluminous X-ray sources (ULX) are off-nuclear point sources in nearby galaxies whose X-ray luminosity exceeds the theoretical maximum for spherical infall (the Eddington limit) onto stellar-mass black holes. Their luminosity ranges from $10^{40}$ erg s$^{-1} < L_X$(0.5 - 10 keV) $<10^{40}$ erg s$^{-1}$. Since higher masses imply less extreme ratios of the luminosity to the isotropic Eddington limit theoretical models have focused on black hole rather than neutron star systems. The most challenging sources to explain are those at the luminous end ($L_X$ > $10^{40}$ erg s$^{-1}$), which require black hole masses MBH >50 solar masses and/or significant departures from the standard thin disk accretion that powers bright Galactic X-ray binaries. Here we report broadband X-ray observations of the nuclear region of the galaxy M82, which contains two bright ULXs. The observations reveal pulsations of average period 1.37 s with a 2.5-day sinusoidal modulation. The pulsations result from the rotation of a magnetized neutron star, and the modulation arises from its binary orbit. The pulsed flux alone corresponds to $L_X$(3 - 30 keV) = $4.9 times 10^{39}$ erg s$^{-1}$. The pulsating source is spatially coincident with a variable ULX which can reach $L_X$ (0.3 - 10 keV) = $1.8 times 10^{40}$ erg s$^{-1}$. This association implies a luminosity ~100 times the Eddington limit for a 1.4 solar mass object, or more than ten times brighter than any known accreting pulsar. This finding implies that neutron stars may not be rare in the ULX population, and it challenges physical models for the accretion of matter onto magnetized compact objects.
Although ultra-luminous X-ray sources (ULX) are important for astrophysics due to their extreme apparent super-Eddington luminosities, their nature is still poorly known. Theoretical and observational studies suggest that ULXs could be a diversified group of objects composed of low-mass X-ray binaries, high-mass X-ray binaries and marginally also systems containing intermediate-mass black holes, which is supported by their presence in a variety of environments. Observational data on the ULX donors could significantly boost our understanding of these systems, but only a few were detected. There are several candidates, mostly red supergiants (RSGs), but surveys are typically biased toward luminous near-infrared objects. Nevertheless, it is worth exploring if RSGs can be members of ULX binaries. In such systems matter accreted onto the compact body would have to be provided by the stellar wind of the companion, since a Roche-lobe overflow could be unstable for relevant mass-ratios. Here we present a comprehensive study of the evolution and population of wind-fed ULXs and provide a theoretical support for the link between RSGs and ULXs. Our estimated upper limit on contribution of wind-fed ULX to the overall ULX population is $sim75$--$96%$ for young ($<100$ Myr) star forming environments, $sim 49$--$87%$ for prolonged constant star formation (e.g., disk of Milky Way), and $lesssim1%$ for environments in which star formation ceased long time ($>2$ Gyr) ago. We show also that some wind-fed ULXs (up to $6%$) may evolve into merging double compact objects (DCOs), but typical systems are not viable progenitors of such binaries because of their large separations. We demonstrate that, the exclusion of wind-fed ULXs from population studies of ULXs, might have lead to systematical errors in their conclusions.
Her X-1 is an accreting neutron star in an intermediate-mass X-ray binary. Like low-mass X-ray binaries (LMXBs), it accretes via Roche-lobe overflow, but similar to many high-mass X-ray binaries containing a neutron star, Her X-1 has a strong magneti c field and slow spin. Here, we present the discovery of radio emission from Her X-1 with the Very Large Array. During the radio observation, the central X-ray source was partially obscured by a warped disk. We measure a radio flux density of $38.7 pm 4.8$ $mu$Jy at $9$ GHz but can not constrain the spectral shape. We discuss possible origins of the radio emission, and conclude that coherent emission, a stellar wind, shocks and a propeller outflow are all unlikely explanations. A jet, as seen in LMXBs, is consistent with the observed radio properties. We consider the implications of the presence of a jet in Her X-1 on jet formation mechanisms and on the launcing of jets by neutron stars with strong magnetic fields.
We use XMM-Newton and Swift data to study spectral variability in the ultraluminous X-ray source (ULX), Holmberg IX X-1. The source luminosity varies by a factor 3-4, giving rise to corresponding spectral changes which are significant, but subtle, an d not well tracked by a simple hardness ratio. Instead, we co-add the Swift data in intensity bins and do full spectral fitting with disc plus thermal Comptonisation models. All the data are well-fitted by a low temperature, optically thick Comptonising corona, and the variability can be roughly characterised by decreasing temperature and increasing optical depth as the source becomes brighter, as expected if the corona is becoming progressively mass loaded by material blown off the super-Eddington inner disc. This variability behaviour is seen in other ULX which have similar spectra, but is opposite to the trend seen in ULX with much softer spectra. This supports the idea that there are two distinct physical regimes in ULXs, where the spectra go from being dominated by a disc-corona to being dominated by a wind.
The recent discovery of a neutron star accretor in the ultra-luminous X-ray source M82 X-2 challenges our understanding of high-mass X-ray binary formation and evolution. By combining binary population synthesis and detailed mass-transfer models, how ever, we show that the binary parameters of M82 X-2 are not surprising provided non-conservative mass transfer is allowed. Specifically, the donor-mass lower limit and orbital period measured for M82 X-2 lie near the most probable values predicted by population synthesis models, and systems such as M82 X-2 should exist in approximately 13% of the galaxies with a star-formation history similar to M82. We conclude that the binary system that formed M82 X-2 is most likely less than 50 Myr old and contains a donor star which had an initial mass of approximately 8-10 M$_odot$, while the NSs progenitor star had an initial mass in the $8-25,rm M_{odot}$ range. The donor star still currently resides on the main sequence, and is capable of continued MT on the thermal timescale, while in the ultra-luminous X-ray regime, for as long as 400,000 years.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا