ﻻ يوجد ملخص باللغة العربية
Electronic states in 2D materials can exhibit pseudospin degrees of freedom, which allow for unique carrier-field interaction scenarios. Here, we investigate ultrafast sublattice pseudospin relaxation in graphene by means of polarization-resolved photoluminescence spectroscopy. Comparison with microscopic Boltzmann simulations allows to determine a lifetime of the optically aligned pseudospin distribution of $12pm 2,text{fs}$. This experimental approach extends the toolbox of graphene pseudospintronics, providing novel means to investigate pseudospin dynamics in active devices or under external fields.
Interband optical transitions in graphene are subject to pseudospin selection rules. Impulsive excitation with linearly polarized light generates an anisotropic photocarrier occupation in momentum space that evolves at timescales shorter than 100fs.
The possibility of transporting spin information over long distances in graphene, owing to its small intrinsic spin-orbit coupling (SOC) and the absence of hyperfine interaction, has led to intense research into spintronic applications. However, meas
The pseudospin of Dirac electrons in graphene manifests itself in a peculiar momentum anisotropy for photo-excited electron-hole pairs. These interband excitations are in fact forbidden along the direction of the light polarization, and are maximum p
For most optoelectronic applications of graphene a thorough understanding of the processes that govern energy relaxation of photoexcited carriers is essential. The ultrafast energy relaxation in graphene occurs through two competing pathways: carrier
We present a joint theory-experiment study on ultrafast photoluminescence from photoexcited graphene. Based on a microscopic theory, we reveal two distinct mechanisms behind the occurring photoluminescence: Besides the well-known incoherent contribut