ترغب بنشر مسار تعليمي؟ اضغط هنا

Fermi edge singularities in transport through lateral GaAs quantum dots

77   0   0.0 ( 0 )
 نشر من قبل Tobias Stefan Kr\\\"ahenmann
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We measure tunnelling currents through electrostatically defined quantum dots in a GaAs/AlGaAs heterostructure connected to two leads. For certain tunnelling barrier configurations and high sample bias we find a pronounced resonance associated with a Fermi edge singularity. This many-body scattering effect appears when the electrochemical potential of the quantum dot is aligned with the Fermi level of the lead less coupled to the dot. By changing the relative tunnelling barrier strength we are able to tune the interaction of the localised electron with the Fermi sea.

قيم البحث

اقرأ أيضاً

300 - I. Weymann , J. Barnas , 2012
We report on theoretical studies of transport through graphene quantum dots weakly coupled to external ferromagnetic leads. The calculations are performed by exact diagonalization of a tight-binding Hamiltonian with finite Coulomb correlations for gr aphene sheet and by using the real-time diagrammatic technique in the sequential and cotunneling regimes. The emphasis is put on the role of graphene flake shape and spontaneous edge magnetization in transport characteristics, such as the differential conductance, tunneling magnetoresistance (TMR) and the shot noise. It is shown that for certain shapes of the graphene dots a negative differential conductance and nontrivial behavior of the TMR effect can occur.
164 - M. Tolea , A. Aldea , B. R. Bulka 2008
We analyze the electronic transport through a quantum dot that contains a magnetic impurity. The coherent transport of electrons is governed by the quantum confinement inside the dot, but is also influenced by the exchange interaction with the impuri ty. The interplay between the two gives raise to the singlet-triplet splitting of the energy levels available for the tunneling electron. In this paper, we focus on the charge fluctuations and, more precisely, the height of the conductance peaks. We show that the conductance peaks corresponding to the triplet levels are three times higher than those corresponding to singlet levels, if electronic correlations are neglected (for non-interacting dots, when an exact solution can be obtained). Next, we consider the Coulomb repulsion and the many-body correlations. In this case, the singlet/triplet peak height ratio has a complex behavior. Usually the highest peak corresponds to the state that is lowest in energy (ground state), regardless if it is singlet or triplet. In the end, we get an insight on the Kondo regime for such a system, and show the formation of three Kondo peaks. We use the equation of motion method with appropriate decoupling.
In this article we review the state of the art on the transport properties of quantum dot systems connected to superconducting and normal electrodes. The review is mainly focused on the theoretical achievements although a summary of the most relevant experimental results is also given. A large part of the discussion is devoted to the single level Anderson type models generalized to include superconductivity in the leads, which already contains most of the interesting physical phenomena. Particular attention is paid to the competition between pairing and Kondo correlations, the emergence of pi-junction behavior, the interplay of Andreev and resonant tunneling, and the important role of Andreev bound states which characterized the spectral properties of most of these systems. We give technical details on the several different analytical and numerical methods which have been developed for describing these properties. We further discuss the recent theoretical efforts devoted to extend this analysis to more complex situations like multidot, multilevel or multiterminal configurations in which novel phenomena is expected to emerge. These include control of the localized spin states by a Josephson current and also the possibility of creating entangled electron pairs by means of non-local Andreev processes.
291 - B. Grbic , R. Leturcq , T. Ihn 2007
Strong spin-orbit interaction characteristic for p-type GaAs systems, makes such systems promising for the realization of spintronic devices. Here we report on transport measurements in nanostructures fabricated on p-type, C-doped GaAs heterostructur es by scanning probe oxidation lithography. We observe conductance quantization in a quantum point contact, as well as pronounced Coulomb resonances in two quantum dots with different geometries. Charging energies for both dots, extracted from Coulomb diamond measurements are in agreement with the lithographic dimensions of the dots. The absence of excited states in Coulomb diamond measurements indicates that the dots are in the multi-level transport regime.
We theoretically investigate transport signatures of quantum interference in highly symmetric double quantum dots in a parallel geometry and demonstrate that extremely weak symmetry-breaking effects can have a dramatic influence on the current. Our c alculations are based on a master equation where quantum interference enters as non-diagonal elements of the density matrix of the double quantum dots. We also show that many results have a physically intuitive meaning when recasting our equations as Bloch-like equations for a pseudo spin associated with the dot occupation. In the perfectly symmetric configuration with equal tunnel couplings and orbital energies of both dots, there is no unique stationary state density matrix. Interestingly, however, adding arbitrarily small symmetry-breaking terms to the tunnel couplings or orbital energies stabilizes a stationary state either with or without quantum interference, depending on the competition between these two perturbations. The different solutions can correspond to very different current levels. Therefore, if the orbital energies and/or tunnel couplings are controlled by, e.g., electrostatic gating, the double quantum dot can act as an exceptionally sensitive electric switch.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا