ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong spin-orbit interaction of light on the surface of atomically thin crystals

96   0   0.0 ( 0 )
 نشر من قبل Hailu Luo
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The photonic spin Hall effect (SHE) can be regarded as a direct optical analogy of the SHE in electronic systems where a refractive index gradient plays the role of electric potential. However, it has been demonstrated that the effective refractive index fails to adequately explain the lightmatter interaction in atomically thin crystals. In this paper, we examine the spin-orbit interaction on the surface of the freestanding atomically thin crystals. We find that it is not necessary to involve the effective refractive index to describe the spin-orbit interaction and the photonic SHE in the atomically thin crystals. The strong spin-orbit interaction and giant photonic SHE have been predicted, which can be explained as the large polarization rotation of plane-wave components in order to satisfy the transversality of photon.



قيم البحث

اقرأ أيضاً

How to measure the optical conductivity of atomically thin crystals is an important but challenging issue due to the weak light-matter interaction at the atomic scale. Photonic spin Hall effect, as a fundamental physical effect in light-matter intera ction, is extremely sensitive to the optical conductivity of atomically thin crystals. Here, we report a precision measurement of the optical conductivity of graphene, where the photonic spin Hall effect acts as a measurement pointer. By incorporating with the weak-value amplification technique, the optical conductivity of monolayer graphene taken as a universal constant of $(0.993pm0.005)sigma_0$ is detected, and a high measuring resolution with $1.5times10^{-8}Omega^{-1}$ is obtained. For few-layer graphene without twist, we find that the conductivities increase linearly with layer number. Our idea could provide an important measurement technique for probing other parameters of atomically thin crystals, such as magneto-optical constant, circular dichroism, and optical nonlinear coefficient.
Optical technology may provide important architectures for future computing, such as analog optical computing and image processing. Compared with traditional electric operation, optical operation has shown some unique advantages including faster oper ating speeds and lower power consumption. Here, we propose an optical full differentiator based on the spin-orbit interaction of light at a simple optical interface. The broadband optical operation is independent on the wavelength due to the nature of purely geometric. As an important application of the fully differential operation, the broadband image processing of edge detection is demonstrated. By adjusting the polarization of the incident beam, the one-dimension edge imaging at any desirable direction can be obtained. The broadband image processing of edge detection provides possible applications in autonomous driving, target recognition, microscopic imaging, and augmented reality.
We develop a novel theoretical framework describing polariton-enhanced spin-orbit interaction of light on the surface of two-dimensional media. Starting from the integral formulation of electromagnetic scattering, we exploit the reduced dimensionalit y of the system to introduce a quantum-like formalism particularly suitable to fully take advantage of rotational invariance. Our description is closely related to that of a fictitious spin one quantum particle living in the atomically thin medium, whose orbital, spin and total angular momenta play a key role in the scattering process. Conservation of total angular momentum upon scattering enables to physically unveil the interaction between radiation and the two-dimensional material along with the detailed exchange processes among orbital and spin components. In addition, we specialize our model to doped extended graphene, finding such spin-orbit interaction to be dramatically enhanced by the excitation of surface plasmon polaritons propagating radially along the graphene sheet. We provide several examples of the enormous possibilities offered by plasmon-enhanced spin-orbit interaction of light including vortex generation, mixing, and engineering of tunable deep subwavelength arrays of optical traps in the near field. Our results hold great potential for the development of nano-scaled quantum active elements and logic gates for the manipulation of hyper-entangled photon states as well as for the design of artificial media imprinted by engineered photonic lattices tweezing cold atoms into the desired patterns.
The edge diffraction of a homogeneously polarized light beam is studied theoretically based on the paraxial optics and Fresnel-Kirchhoff approximation, and the dependence of the diffracted beam pattern of the incident beam polarization is predicted. If the incident beam is circularly polarized, the trajectory of the diffracted beam centre of gravity experiences a small angular deviation from the geometrically expected direction. The deviation is parallel to the screen edge and reverses the sign with the polarization handedness; it is explicitly calculated for the case of a Gaussian incident beam with plane wavefront. This effect is a manifestation of the spin-orbit interaction of light and can be interpreted as a revelation of the internal spin energy flow immanent in circularly polarized beams. It also exposes the vortex character of the weak longitudinal field component associated with the circularly polarized incident beam.
The field of two-dimensional materials has been developing at an impressive pace, with atomically thin crystals of an increasing number of different compounds that have become available, together with techniques enabling their assembly into functiona l heterostructures. The strategy to detect these atomically thin crystals has however remained unchanged since the discovery of graphene. Such an absence of evolution is starting to pose problems because for many of the 2D materials of current interest the optical contrast provided by the commonly used detection procedure is insufficient to identify the presence of individual monolayers or to determine unambiguously the thickness of atomically thin multilayers. Here we explore an alternative detection strategy, in which the enhancement of optical contrast originates from the use of optically inhomogeneous substrates, leading to diffusively reflected light. Owing to its peculiar polarization properties and to its angular distribution, diffusively reflected light allows a strong contrast enhancement to be achieved through the implementation of suitable illumination-detection schemes. We validate this conclusion by carrying out a detailed quantitative analysis of optical contrast, which fully reproduces our experimental observations on over 60 WSe$_2$ mono-, bi-, and trilayers. We further validate the proposed strategy by extending our analysis to atomically thin phosphorene, InSe, and graphene crystals. Our conclusion is that the use of diffusively reflected light to detect and identify atomically thin layers is an interesting alternative to the common detection scheme based on Fabry-Perot interference, because it enables atomically thin layers to be detected on substrates others than the commonly used Si/SiO$_2$, and it may offer higher sensitivity depending on the specific 2D material considered.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا