ﻻ يوجد ملخص باللغة العربية
Implementing the modal method in the electromagnetic grating diffraction problem delivered by the curvilinear coordinate transformation yields a general analytical solution to the 1D grating diffraction problem in a form of a T-matrix. Simultaneously it is shown that the validity of the Rayleigh expansion is defined by the validity of the modal expansion in a transformed medium delivered by the coordinate transformation.
An analytical method for diffraction of a plane electromagnetic wave at periodically-modulated graphene sheet is presented. Both interface corrugation and periodical change in the optical conductivity are considered. Explicit expressions for reflecti
The Schr{o}dinger equation is solved exactly for some well known potentials. Solutions are obtained reducing the Schr{o}dinger equation into a second order differential equation by using an appropriate coordinate transformation. The Nikiforov-Uvarov
Three objections to the canonical analytical treatment of covariant electromagnetic theory are presented: (i) only half of Maxwells equations are present upon variation of the fundamental Lagrangian; (ii) the trace of the canonical energy-momentum te
In this paper we present a framework which provides an analytical (i.e., infinitely differentiable) transformation between spatial coordinates and orbital elements for the solution of the gravitational two-body problem. The formalism omits all singul
We are concerned with the suitability of the main models of compressible fluid dynamics for the Lighthill problem for shock diffraction by a convex corned wedge, by studying the regularity of solutions of the problem, which can be formulated as a fre