ﻻ يوجد ملخص باللغة العربية
We consider geometrical optimization problems related to optimizing the error probability in the presence of a Gaussian noise. One famous questions in the field is the weak simplex conjecture. We discuss possible approaches to it, and state related conjectures about the Gaussian measure, in particular, the conjecture about minimizing of the Gaussian measure of a simplex. We also consider antipodal codes, apply the v{S}idak inequality and establish some theoretical and some numerical results about their optimality.
In order to perform universal fault-tolerant quantum computation, one needs to implement a logical non-Clifford gate. Consequently, it is important to understand codes that implement such gates transversally. In this paper, we adopt an algebraic appr
The paper considers quantitati
Inexpensive cloud services, such as serverless computing, are often vulnerable to straggling nodes that increase end-to-end latency for distributed computation. We propose and implement simple yet principled approaches for straggler mitigation in ser
The Minkowski problem in Gaussian probability space is studied in this paper. In addition to providing an existence result on a Gaussian-volume-normalized version of this problem, the main goal of the current work is to provide uniqueness and existen
Optical communication channels are ultimately quantum-mechanical in nature, and we must therefore look beyond classical information theory to determine their communication capacity as well as to find efficient encoding and decoding schemes of the hig