ﻻ يوجد ملخص باللغة العربية
The Fermilab Tevatron colliders data-taking run ended in September 2011, yielding a dataset with rich scientific potential. The CDF and D0 experiments each have approximately 9 PB of collider and simulated data stored on tape. A large computing infrastructure consisting of tape storage, disk cache, and distributed grid computing for physics analysis with the Tevatron data is present at Fermilab. The Fermilab Run II data preservation project intends to keep this analysis capability sustained through the year 2020 and beyond. To achieve this goal, we have implemented a system that utilizes virtualization, automated validation, and migration to new standards in both software and data storage technology and leverages resources available from currently-running experiments at Fermilab. These efforts have also provided useful lessons in ensuring long-term data access for numerous experiments, and enable high-quality scientific output for years to come.
The Mu2e experiment at Fermilab will search for the charged lepton flavor violating process of neutrino-less $mu to e$ coherent conversion in the field of an aluminum nucleus. About $7 cdot 10^{17}$ muons, provided by a dedicated muon beam line in co
The four LEP experiments ALEPH, DELPHI, L3 and OPAL successfully recorded e+e- collision data during the years 1989 to 2000. As part of the ordinary evolution in High Energy Physics, these experiments can not be repeated and their data is therefore u
We present results from MiniMax (Fermilab T-864), a small test/experiment at the Tevatron designed to search for the production of disoriented chiral condensate (DCC) in $p - bar p$ collisions at $sqrt{s} = 1.8$ TeV in the forward direction, $sim 3.4
In this report, we summarize the latest results of the top-quark pair production asymmetry and present the new result of bottom-quark pair production asymmetry. By looking at the results obtained by the CDF experiment, one can see a discrepancy in bo
These lectures contain an introduction to the search for supersymmetry at hadron colliders. The Tevatron is one of high-energy physics most sophisticated tools. The high center-of-mass energy of its proton-antiproton collisions makes it an ideal plac