ﻻ يوجد ملخص باللغة العربية
Kinetically constrained lattice gases (KCLG) are interacting particle systems on the integer lattice $mathbb Z^d$ with hard core exclusion and Kawasaki type dynamics. Their peculiarity is that jumps are allowed only if the configuration satisfies a constraint which asks for enough empty sites in a certain local neighborhood. KCLG have been introduced and extensively studied in physics literature as models of glassy dynamics. We focus on the most studied class of KCLG, the Kob Andersen (KA) models. We analyze the behavior of a tracer (i.e. a tagged particle) at equilibrium. We prove that for all dimensions $dgeq 2$ and for any equilibrium particle density, under diffusive rescaling the motion of the tracer converges to a $d$-dimensional Brownian motion with non-degenerate diffusion matrix. Therefore we disprove the occurrence of a diffusive/non diffusive transition which had been conjectured in physics literature. Our technique is flexible enough and can be extended to analyse the tracer behavior for other choices of constraints.
A hierarchy of timescales is ubiquitous in biological systems, where enzymatic reactions play an important role because they can hasten the relaxation to equilibrium. We introduced a statistical physics model of interacting spins that also incorporat
We study lattice gas systems on the honeycomb lattice where particles exclude neighboring sites up to order $k$ ($k=1ldots5$) from being occupied by another particle. Monte Carlo simulations were used to obtain phase diagrams and characterize phase t
We consider one component lattice gases with a local dynamics and a stationary product Bernoulli measure. We give upper and lower bounds on the diffusivity at an equilibrium point depending on the dimension and the local behavior of the macroscopic f
We study a stochastic lattice gas of particles in one dimension with strictly finite-range interactions that respect the fracton-like conservation laws of total charge and dipole moment. As the charge density is varied, the connectivity of the system
We report on the translation and rotation of particle clusters made through the combination of spherical building blocks. These clusters present ideal model systems to study the motion of objects with complex shape. Because they could be separated in