ﻻ يوجد ملخص باللغة العربية
An important step in the efficient computation of multi-dimensional theta functions is the construction of appropriate symplectic transformations for a given Riemann matrix assuring a rapid convergence of the theta series. An algorithm is presented to approximately map the Riemann matrix to the Siegel fundamental domain. The shortest vector of the lattice generated by the Riemann matrix is identified exactly, and the algorithm ensures that its length is larger than $sqrt{3}/2$. The approach is based on a previous algorithm by Deconinck et al. using the LLL algorithm for lattice reductions. Here, the LLL algorithm is replaced by exact Minkowski reductions for small genus and an exact identification of the shortest lattice vector for larger values of the genus.
We compute structure constants in N=4 SYM at one loop using Integrability. This requires having full control over the two loop eigenvectors of the dilatation operator for operators of arbitrary size. To achieve this, we develop an algebraic descripti
We consider the Cauchy problem for the Burgers hierarchy with general time dependent coefficients. The closed form for the Greens function of the corresponding linear equation of arbitrary order $N$ is shown to be a sum of generalised hypergeometric
A large class of semi-Hamiltonian systems of hydrodynamic type is interpreted as the equations governing families of critical points of functions obeying the classical linear Darboux equations for conjugate nets.The distinguished role of the Euler-Po
We show that, when a non-integrable rational map changes to an integrable one continuously, a large part of the Julia set of the map approach indeterminate points (IDP) of the map along algebraic curves. We will see that the IDPs are singular loci of the curves.
We develop a theory of integrable dispersive deformations of 2+1 dimensional Hamiltonian systems of hydrodynamic type following the scheme proposed by Dubrovin and his collaborators in 1+1 dimensions. Our results show that the multi-dimensional situa