ترغب بنشر مسار تعليمي؟ اضغط هنا

The effect of the atmospheric refractive index on the radio signal of extensive air showers

74   0   0.0 ( 0 )
 نشر من قبل Arthur Corstanje
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

For the interpretation of measurements of radio emission from extensive air showers, an important systematic uncertainty arises from natural variations of the atmospheric refractive index $n$. At a given altitude, the refractivity $N=10^6, (n-1)$ can have relative variations on the order of $10 %$ depending on temperature, humidity, and air pressure. Typical corrections to be applied to $N$ are about $4%$. Using CoREAS simulations of radio emission from air showers, we have evaluated the effect of varying $N$ on measurements of the depth of shower maximum $X_{rm max}$. For an observation band of 30 to 80 MHz, a difference of $4 %$ in refractivity gives rise to a systematic error in the inferred $X_{rm max}$ between 3.5 and 11 $mathrm{g/cm^2}$, for proton showers with zenith angles ranging from 15 to 50 degrees. At higher frequencies, from 120 to 250 MHz, the offset ranges from 10 to 22 $mathrm{g/cm^2}$. These offsets were found to be proportional to the geometric distance to $X_{rm max}$. We have compared the results to a simple model based on the Cherenkov angle. For the 120 to 250 MHz band, the model is in qualitative agreement with the simulations. In typical circumstances, we find a slight decrease in $X_{rm max}$ compared to the default refractivity treatment in CoREAS. While this is within commonly treated systematic uncertainties, accounting for it explicitly improves the accuracy of $X_{rm max}$ measurements.



قيم البحث

اقرأ أيضاً

Extensive air showers, induced by high energy cosmic rays impinging on the Earths atmosphere, produce radio emission that is measured with the LOFAR radio telescope. As the emission comes from a finite distance of a few kilometers, the incident wavef ront is non-planar. A spherical, conical or hyperbolic shape of the wavefront has been proposed, but measurements of individual air showers have been inconclusive so far. For a selected high-quality sample of 161 measured extensive air showers, we have reconstructed the wavefront by measuring pulse arrival times to sub-nanosecond precision in 200 to 350 individual antennas. For each measured air shower, we have fitted a conical, spherical, and hyperboloid shape to the arrival times. The fit quality and a likelihood analysis show that a hyperboloid is the best parametrization. Using a non-planar wavefront shape gives an improved angular resolution, when reconstructing the shower arrival direction. Furthermore, a dependence of the wavefront shape on the shower geometry can be seen. This suggests that it will be possible to use a wavefront shape analysis to get an additional handle on the atmospheric depth of the shower maximum, which is sensitive to the mass of the primary particle.
We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 pm 0.7 (stat) pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.
The antenna array LOPES is set up at the location of the KASCADE-Grande extensive air shower experiment in Karlsruhe, Germany and aims to measure and investigate radio pulses from Extensive Air Showers. The coincident measurements allow us to reconst ruct the electric field strength at observation level in dependence of general EAS parameters. In the present work, the lateral distribution of the radio signal in air showers is studied in detail. It is found that the lateral distributions of the electric field strengths in individual EAS can be described by an exponential function. For about 20% of the events a flattening towards the shower axis is observed, preferentially for showers with large inclination angle. The estimated scale parameters R0 describing the slope of the lateral profiles range between 100 and 200 m. No evidence for a direct correlation of R0 with shower parameters like azimuth angle, geomagnetic angle, or primary energy can be found. This indicates that the lateral profile is an intrinsic property of the radio emission during the shower development which makes the radio detection technique suitable for large scale applications.
86 - J. D. Bray , A. Nelles 2016
One possible approach for detecting ultra-high-energy cosmic rays and neutrinos is to search for radio emission from extensive air showers created when they interact in the atmosphere of Jupiter, effectively utilizing Jupiter as a particle detector. We investigate the potential of this approach. For searches with current or planned radio telescopes we find that the effective area for detection of cosmic rays is substantial (~3*10^7 km^2), but the acceptance angle is so small that the typical geometric aperture (~10^3 km^2 sr) is less than that of existing terrestrial detectors, and cosmic rays also cannot be detected below an extremely high threshold energy (~10^23 eV). The geometric aperture for neutrinos is slightly larger, and greater sensitivity can be achieved with a radio detector on a Jupiter-orbiting satellite, but in neither case is this sufficient to constitute a practical detection technique. Exploitation of the large surface area of Jupiter for detecting ultra-high-energy particles remains a long-term prospect that will require a different technique, such as orbital fluorescence detection.
The increasing efforts are still in progress to establish existence and to investigate the properties of pairs of Extensive Air Showers (EAS) that can be considered as originated from a single event which produced the Cosmic Radiation (CR) particles that in turn initiated both showers. Considerably remote CR installations observing EAS events are particularly useful for this purpose. The estimation method is proposed for determination of such EAS pairs, observed by a pair of mutually remote installations and initiated by two initial CR particles, which can be regarded as historically proximal and possibly congenetic. The numerical example of application of this method is given using a toy simulation sample of showers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا