ﻻ يوجد ملخص باللغة العربية
We present here the results of the first part of the VLBI Ecliptic Plane Survey (VEPS) program. The goal of the program is to find all compact sources within $7.5^circ$ of the ecliptic plane which are suitable as calibrators for anticipated phase referencing observations of spacecraft and determine their positions with accuracy at the 1.5~nrad level. We run the program in two modes: the search mode and the refining mode. In the search mode, a complete sample of all sources brighter than 50 mJy at 5 GHz listed in the Parkes-MIT-NRAO (PMN) and Green Bank 6~cm (GB6) catalogs, except those previously detected with VLBI, is observed. In the refining mode, the positions of all ecliptic plane sources, including those found in the search mode, are improved. By October 2016, thirteen 24-hr sessions that targeted all sources brighter than 100~mJy have been observed and analyzed. Among 3320 observed target sources, 555 objects have been detected. We also conducted a number of follow-up VLBI experiments in the refining mode and improved the positions of 249 ecliptic plane sources.
We launched the VLBI Ecliptic Plane Survey program in 2015. The goal of this program is to find all compact sources within 7.5 degrees of the ecliptic plane which are suitable as phase calibrators for anticipated phase referencing observations of spa
We report the orbital distribution of the Trans-Neptunian objects (TNOs) discovered during the High Ecliptic Latitude (HiLat) extension of the Canada-France Ecliptic Plane Survey (CFEPS), conducted from June 2006 to July 2009. The HiLat component was
This paper presents the catalog of correlated flux densities in three ranges of baseline projection lengths of 637 sources from a 43 GHz (Q-band) survey observed with the Korean VLBI Network. Of them, 623 sources have not been observed before at Q-ba
Radio observations using the Very Long Baseline Interferometry (VLBI) technique typically have fields of view of only a few arcseconds, due to the computational problems inherent in imaging larger fields. Furthermore, sensitivity limitations restrict
The K2 Mission uses the Kepler spacecraft to obtain high-precision photometry over ~80 day campaigns in the ecliptic plane. The Ecliptic Plane Input Catalog (EPIC) provides coordinates, photometry and kinematics based on a federation of all-sky catal