ﻻ يوجد ملخص باللغة العربية
The Stieltjes constants $gamma_k(a)$ appear in the regular part of the Laurent expansion for the Hurwitz zeta function $zeta(s,a)$. We present summatory results for these constants $gamma_k(a)$ in terms of fundamental mathematical constants such as the Catalan constant, and further relate them to products of rational functions of prime numbers. We provide examples of infinite series of differences of Stieltjes constants evaluating as volumes in hyperbolic $3$-space. We present a new series representation for the difference of the first Stieltjes constant at rational arguments. We obtain expressions for $zeta(1/2)L_{-p}(1/2)$, where for primes $p>7$, $L_{-p}(s)$ are certain $L$-series, and remarkably tight bounds for the value $zeta(1/2)$, $zeta(s)=zeta(s,1)$ being the Riemann zeta function.
We consider the summatory function of the number of prime factors for integers $leq x$ over arithmetic progressions. Numerical experiments suggest that some arithmetic progressions consist more number of prime factors than others. Greg Martin conject
In this paper we study products of quadratic residues modulo odd primes and prove some identities involving quadratic residues. For instance, let $p$ be an odd prime. We prove that if $pequiv5pmod8$, then $$prod_{0<x<p/2,(frac{x}{p})=1}xequiv(-1)^{1+
We study the interplay between recurrences for zeta related functions at integer values, `Minor Corner Lattice Toeplitz determinants and integer composition based sums. Our investigations touch on functional identities due to Ramanujan and Grosswald,
The Riemann zeta identity at even integers of Lettington, along with his other Bernoulli and zeta relations, are generalized. Other corresponding recurrences and determinant relations are illustrated. Another consequence is the application to sums of
In this paper we present some new identities for multiple polylogarithms (abbr. MPLs) and multiple harmonic star sums (abbr. MHSSs) by using the methods of iterated integral computations of logarithm functions. Then, by applying these formulas obtain