ترغب بنشر مسار تعليمي؟ اضغط هنا

Joint secrecy over the K-Transmitter Multiple Access Channel

102   0   0.0 ( 0 )
 نشر من قبل Yanling Chen
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper studies the problem of secure communication over a K-transmitter multiple access channel in the presence of an external eavesdropper, subject to a joint secrecy constraint (i.e., information leakage rate from the collection of K messages to an eavesdropper is made vanishing). As a result, we establish the joint secrecy achievable rate region. To this end, our results build upon two techniques in addition to the standard information-theoretic methods. The first is a generalization of Chia-El Gamals lemma on entropy bound for a set of codewords given partial information. The second is to utilize a compact representation of a list of sets that, together with properties of mutual information, leads to an efficient Fourier-Motzkin elimination. These two approaches could also be of independent interests in other contexts.

قيم البحث

اقرأ أيضاً

In this paper, we study the problem of secret communication over a multiple-access channel with a common message. Here, we assume that two transmitters have confidential messages, which must be kept secret from the wiretapper (the second receiver), a nd both of them have access to a common message which can be decoded by the two receivers. We call this setting as Multiple-Access Wiretap Channel with Common message (MAWC-CM). For this setting, we derive general inner and outer bounds on the secrecy capacity region for the discrete memoryless case and show that these bounds meet each other for a special case called the switch channel. As well, for a Gaussian version of MAWC-CM, we derive inner and outer bounds on the secrecy capacity region. Providing numerical results for the Gaussian case, we illustrate the comparison between the derived achievable rate region and the outer bound for the considered model and the capacity region of compound multiple access channel.
A hybrid communication network with a common analog signal and an independent digital data stream as input to each node in a multiple access network is considered. The receiver/base-station has to estimate the analog signal with a given fidelity, and decode the digital streams with a low error probability. Treating the analog signal as a common state process, we set up a joint state estimation and communication problem in a Gaussian multiple access channel (MAC) with additive state. The transmitters have non-causal knowledge of the state process, and need to communicate independent data streams in addition to facilitating state estimation at the receiver. We first provide a complete characterization of the optimal trade-off between mean squared error distortion performance in estimating the state and the data rates for the message streams from two transmitting nodes. This is then generalized to an N-sender MAC. To this end, we show a natural connection between the state-dependent MAC model and a hybrid multi-sensor network in which a common source phenomenon is observed at N transmitting nodes. Each node encodes the source observations as well as an independent message stream over a Gaussian MAC without any state process. The receiver is interested estimating the source and all the messages. Again the distortion-rate performance is characterized.
In this work we show how an improved lower bound to the error exponent of the memoryless multiple-access (MAC) channel is attained via the use of linear codes, thus demonstrating that structure can be beneficial even in cases where there is no capaci ty gain. We show that if the MAC channel is modulo-additive, then any error probability, and hence any error exponent, achievable by a linear code for the corresponding single-user channel, is also achievable for the MAC channel. Specifically, for an alphabet of prime cardinality, where linear codes achieve the best known exponents in the single-user setting and the optimal exponent above the critical rate, this performance carries over to the MAC setting. At least at low rates, where expurgation is needed, our approach strictly improves performance over previous results, where expurgation was used at most for one of the users. Even when the MAC channel is not additive, it may be transformed into such a channel. While the transformation is lossy, we show that the distributed structure gain in some nearly additive cases outweighs the loss, and thus the error exponent can improve upon the best known error exponent for these cases as well. Finally we apply a similar approach to the Gaussian MAC channel. We obtain an improvement over the best known achievable exponent, given by Gallager, for certain rate pairs, using lattice codes which satisfy a nesting condition.
Applications where multiple users communicate with a common server and desire low latency are common and increasing. This paper studies a network with two source nodes, one relay node and a destination node, where each source nodes wishes to transmit a sequence of messages, through the relay, to the destination, who is required to decode the messages with a strict delay constraint $T$. The network with a single source node has been studied in cite{Silas2019}. We start by introducing two important tools: the delay spectrum, which generalizes delay-constrained point-to-point transmission, and concatenation, which, similar to time sharing, allows combinations of different codes in order to achieve a desired regime of operation. Using these tools, we are able to generalize the two schemes previously presented in cite{Silas2019}, and propose a novel scheme which allows us to achieve optimal rates under a set of well-defined conditions. Such novel scheme is further optimized in order to improve the achievable rates in the scenarios where the conditions for optimality are not met.
In the scalar dirty multiple-access channel, in addition to Gaussian noise, two additive interference signals are present, each known non-causally to a single transmitter. It was shown by Philosof et al. that for strong interferences, an i.i.d. ensem ble of codes does not achieve the capacity region. Rather, a structured-codes approach was presented, that was shown to be optimal in the limit of high signal-to-noise ratios, where the sum-capacity is dictated by the minimal (bottleneck) channel gain. In this paper, we consider the multiple-input multiple-output (MIMO) variant of this setting. In order to incorporate structured codes in this case, one can utilize matrix decompositions that transform the channel into effective parallel scalar dirty multiple-access channels. This approach however suffers from a bottleneck effect for each effective scalar channel and therefore the achievable rates strongly depend on the chosen decomposition. It is shown that a recently proposed decomposition, where the diagonals of the effective channel matrices are equal up to a scaling factor, is optimal at high signal-to-noise ratios, under an equal rank assumption. This approach is then extended to any number of transmitters. Finally, an application to physical-layer network coding for the MIMO two-way relay channel is presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا