ترغب بنشر مسار تعليمي؟ اضغط هنا

Zone clearance in an infinite TASEP with a step initial condition

30   0   0.0 ( 0 )
 نشر من قبل Julien Cividini
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The TASEP is a paradigmatic model of out-of-equilibrium statistical physics, for which many quantities have been computed, either exactly or by approximate methods. In this work we study two new kinds of observables that have some relevance in biological or traffic models. They represent the probability for a given clearance zone of the lattice to be empty (for the first time) at a given time, starting from a step density profile. Exact expressions are obtained for single-time quantities, while more involved history-dependent observables are studied by Monte Carlo simulation, and partially predicted by a phenomenological approach.


قيم البحث

اقرأ أيضاً

We consider the totally asymmetric simple exclusion process (TASEP) with non-random initial condition having density $rho$ on $mathbb{Z}_-$ and $lambda$ on $mathbb{Z}_+$, and a second class particle initially at the origin. For $rho<lambda$, there is a shock and the second class particle moves with speed $1-lambda-rho$. For large time $t$, we show that the position of the second class particle fluctuates on a $t^{1/3}$ scale and determine its limiting law. We also obtain the limiting distribution of the number of steps made by the second class particle until time $t$.
123 - Jinho Baik , Zhipeng Liu 2019
We consider the one-dimensional totally asymmetric simple exclusion process with an arbitrary initial condition in a spatially periodic domain, and obtain explicit formulas for the multi-point distributions in the space-time plane. The formulas are g iven in terms of an integral involving a Fredholm determinant. We then evaluate the large-time, large-period limit in the relaxation time scale, which is the scale such that the system size starts to affect the height fluctuations. The limit is obtained assuming certain conditions on the initial condition, which we show that the step, flat, and step-flat initial conditions satisfy. Hence, we obtain the limit theorem for these three initial conditions in the periodic model, extending the previous work on the step initial condition. We also consider uniform random and uniform-step random initial conditions.
We present an explicit representation for the matrix product ansatz for some two-species TASEP with open boundary conditions. The construction relies on the integrability of the models, a property that constrains the possible rates at the boundaries. The realisation is built on a tensor product of copies of the DEHP algebras. Using this explicit construction, we are able to calculate the partition function of the models. The densities and currents in the stationary state are also computed. It leads to the phase diagram of the models. Depending on the values of the boundary rates, we obtain for each species shock waves, maximal current, or low/high densities phases.
We study a totally asymmetric simple exclusion process (TASEP) with one defect site, hopping rate $q<1$, near the system boundary. Regarding our system as a pair of uniform TASEPs coupled through the defect, we study various methods to match a emph{f inite} TASEP and an emph{infinite} one across a common boundary. Several approximation schemes are investigated. Utilizing the finite segment mean-field (FSMF) method, we set up a framework for computing the steady state current $J$ as a function of the entry rate $% alpha $ and $q$. For the case where the defect is located at the entry site, we obtain an analytical expression for $J(alpha, q) $ which is in good agreement with Monte Carlo simulation results. When the defect is located deeper in the bulk, we refined the scheme of MacDonald, et.al. [Biopolymers, textbf{6}, 1 (1968)] and find reasonably good fits to the density profiles before the defect site. We discuss the strengths and limitations of each method, as well as possible avenues for further studies.
We study the effect of single biased tracer particle in a bath of other particles performing the random average process (RAP) on an infinite line. We focus on the large time behavior of the mean and the fluctuations of the positions of the particles and also the correlations among them. In the large time t limit these quantities have well-defined scaling forms and grow with time as $sqrt{t}$. A differential equation for the scaling function associated with the correlation function is obtained and solved perturbatively around the solution for a symmetric tracer. Interestingly, when the tracer is totally asymmetric, further progress is enabled by the fact that the particles behind of the tracer do not affect the motion of the particles in front of it, which leads in particular to an exact expression for the variance of the position of the tracer. Finally, the variance and correlations of the gaps between successive particles are also studied. Numerical simulations support our analytical results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا