ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficiently Computing Provenance Graphs for Queries with Negation

96   0   0.0 ( 0 )
 نشر من قبل Seokki Lee
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Explaining why an answer is in the result of a query or why it is missing from the result is important for many applications including auditing, debugging data and queries, and answering hypothetical questions about data. Both types of questions, i.e., why and why-not provenance, have been studied extensively. In this work, we present the first practical approach for answering such questions for queries with negation (first-order queries). Our approach is based on a rewriting of Datalog rules (called firing rules) that captures successful rule derivations within the context of a Datalog query. We extend this rewriting to support negation and to capture failed derivations that explain missing answers. Given a (why or why-not) provenance question, we compute an explanation, i.e., the part of the provenance that is relevant to answer the question. We introduce optimizations that prune parts of a provenance graph early on if we can determine that they will not be part of the explanation for a given question. We present an implementation that runs on top of a relational database using SQL to compute explanations. Our experiments demonstrate that our approach scales to large instances and significantly outperforms an earlier approach which instantiates the full provenance to compute explanations.



قيم البحث

اقرأ أيضاً

Single-round multiway join algorithms first reshuffle data over many servers and then evaluate the query at hand in a parallel and communication-free way. A key question is whether a given distribution policy for the reshuffle is adequate for computi ng a given query, also referred to as parallel-correctness. This paper extends the study of the complexity of parallel-correctness and its constituents, parallel-soundness and parallel-completeness, to unions of conjunctive queries with and without negation. As a by-product it is shown that the containment problem for conjunctive queries with negation is coNEXPTIME-complete.
We consider a class of queries called durability prediction queries that arise commonly in predictive analytics, where we use a given predictive model to answer questions about possible futures to inform our decisions. Examples of durability predicti on queries include what is the probability that this financial product will keep losing money over the next 12 quarters before turning in any profit? and what is the chance for our proposed server cluster to fail the required service-level agreement before its term ends? We devise a general method called Multi-Level Splitting Sampling (MLSS) that can efficiently handle complex queries and complex models -- including those involving black-box functions -- as long as the models allow us to simulate possible futures step by step. Our method addresses the inefficiency of standard Monte Carlo (MC) methods by applying the idea of importance splitting to let one promising sample path prefix generate multiple offspring paths, thereby directing simulation efforts toward more promising paths. We propose practical techniques for designing splitting strategies, freeing users from manual tuning. Experiments show that our approach is able to achieve unbiased estimates and the same error guarantees as standard MC while offering an order-of-magnitude cost reduction.
195 - Luc Moreau 2015
As users become confronted with a deluge of provenance data, dedicated techniques are required to make sense of this kind of information. We present Aggregation by Provenance Types, a provenance graph analysis that is capable of generating provenance graph summaries. It proceeds by converting provenance paths up to some length k to attributes, referred to as provenance types, and by grouping nodes that have the same provenance types. The summary also includes numeric values representing the frequency of nodes and edges in the original graph. A quantitative evaluation and a complexity analysis show that this technique is tractable; with small values of k, it can produce useful summaries and can help detect outliers. We illustrate how the generated summaries can further be used for conformance checking and visualization.
Knowledge graphs (KG) that model the relationships between entities as labeled edges (or facts) in a graph are mostly constructed using a suite of automated extractors, thereby inherently leading to uncertainty in the extracted facts. Modeling the un certainty as probabilistic confidence scores results in a probabilistic knowledge graph. Graph queries over such probabilistic KGs require answer computation along with the computation of those result probabilities, aka, probabilistic inference. We propose a system, HAPPI (How Provenance of Probabilistic Inference), to handle such query processing. Complying with the standard provenance semiring model, we propose a novel commutative semiring to symbolically compute the probability of the result of a query. These provenance-polynomiallike symbolic expressions encode fine-grained information about the probability computation process. We leverage this encoding to efficiently compute as well as maintain the probability of results as the underlying KG changes. Focusing on a popular class of conjunctive basic graph pattern queries on the KG, we compare the performance of HAPPI against a possible-world model of computation and a knowledge compilation tool over two large datasets. We also propose an adaptive system that leverages the strengths of both HAPPI and compilation based techniques. Since existing systems for probabilistic databases mostly focus on query computation, they default to re-computation when facts in the KG are updated. HAPPI, on the other hand, does not just perform probabilistic inference and maintain their provenance, but also provides a mechanism to incrementally maintain them as the KG changes. We extend this maintainability as part of our proposed adaptive system.
Acting on time-critical events by processing ever growing social media or news streams is a major technical challenge. Many of these data sources can be modeled as multi-relational graphs. Continuous queries or techniques to search for rare events th at typically arise in monitoring applications have been studied extensively for relational databases. This work is dedicated to answer the question that emerges naturally: how can we efficiently execute a continuous query on a dynamic graph? This paper presents an exact subgraph search algorithm that exploits the temporal characteristics of representative queries for online news or social media monitoring. The algorithm is based on a novel data structure called the Subgraph Join Tree (SJ-Tree) that leverages the structural and semantic characteristics of the underlying multi-relational graph. The paper concludes with extensive experimentation on several real-world datasets that demonstrates the validity of this approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا