ترغب بنشر مسار تعليمي؟ اضغط هنا

Photometric classification and redshift estimation of LSST Supernovae

76   0   0.0 ( 0 )
 نشر من قبل Mi Dai
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Supernova (SN) classification and redshift estimation using photometric data only have become very important for the Large Synoptic Survey Telescope (LSST), given the large number of SNe that LSST will observe and the impossibility of spectroscopically following up all the SNe. We investigate the performance of a SN classifier that uses SN colors to classify LSST SNe with the Random Forest classification algorithm. Our classifier results in an AUC of 0.98 which represents excellent classification. We are able to obtain a photometric SN sample containing 99$%$ SNe Ia by choosing a probability threshold. We estimate the photometric redshifts (photo-z) of SNe in our sample by fitting the SN light curves using the SALT2 model with nested sampling. We obtain a mean bias ($left<z_mathrm{phot}-z_mathrm{spec}right>$) of 0.012 with $sigmaleft( frac{z_mathrm{phot}-z_mathrm{spec}}{1+z_mathrm{spec}}right) = 0.0294$ without using a host-galaxy photo-z prior, and a mean bias ($left<z_mathrm{phot}-z_mathrm{spec}right>$) of 0.0017 with $sigmaleft( frac{z_mathrm{phot}-z_mathrm{spec}}{1+z_mathrm{spec}}right) = 0.0116$ using a host-galaxy photo-z prior. Assuming a flat $Lambda CDM$ model with $Omega_m=0.3$, we obtain $Omega_m$ of $0.305pm0.008$ (statistical errors only), using the simulated LSST sample of photometric SNe Ia (with intrinsic scatter $sigma_mathrm{int}=0.11$) derived using our methodology without using host-galaxy photo-z prior. Our method will help boost the power of SNe from the LSST as cosmological probes.



قيم البحث

اقرأ أيضاً

Many scientific investigations of photometric galaxy surveys require redshift estimates, whose uncertainty properties are best encapsulated by photometric redshift (photo-z) posterior probability density functions (PDFs). A plethora of photo-z PDF es timation methodologies abound, producing discrepant results with no consensus on a preferred approach. We present the results of a comprehensive experiment comparing twelve photo-z algorithms applied to mock data produced for The Rubin Observatory Legacy Survey of Space and Time (LSST) Dark Energy Science Collaboration (DESC). By supplying perfect prior information, in the form of the complete template library and a representative training set as inputs to each code, we demonstrate the impact of the assumptions underlying each technique on the output photo-z PDFs. In the absence of a notion of true, unbiased photo-z PDFs, we evaluate and interpret multiple metrics of the ensemble properties of the derived photo-z PDFs as well as traditional reductions to photo-z point estimates. We report systematic biases and overall over/under-breadth of the photo-z PDFs of many popular codes, which may indicate avenues for improvement in the algorithms or implementations. Furthermore, we raise attention to the limitations of established metrics for assessing photo-z PDF accuracy; though we identify the conditional density estimate (CDE) loss as a promising metric of photo-z PDF performance in the case where true redshifts are available but true photo-z PDFs are not, we emphasize the need for science-specific performancemetrics.
189 - P. E. Freeman 2009
The development of fast and accurate methods of photometric redshift estimation is a vital step towards being able to fully utilize the data of next-generation surveys within precision cosmology. In this paper we apply a specific approach to spectral connectivity analysis (SCA; Lee & Wasserman 2009) called diffusion map. SCA is a class of non-linear techniques for transforming observed data (e.g., photometric colours for each galaxy, where the data lie on a complex subset of p-dimensional space) to a simpler, more natural coordinate system wherein we apply regression to make redshift predictions. As SCA relies upon eigen-decomposition, our training set size is limited to ~ 10,000 galaxies; we use the Nystrom extension to quickly estimate diffusion coordinates for objects not in the training set. We apply our method to 350,738 SDSS main sample galaxies, 29,816 SDSS luminous red galaxies, and 5,223 galaxies from DEEP2 with CFHTLS ugriz photometry. For all three datasets, we achieve prediction accuracies on par with previous analyses, and find that use of the Nystrom extension leads to a negligible loss of prediction accuracy relative to that achieved with the training sets. As in some previous analyses (e.g., Collister & Lahav 2004, Ball et al. 2008), we observe that our predictions are generally too high (low) in the low (high) redshift regimes. We demonstrate that this is a manifestation of attenuation bias, wherein measurement error (i.e., uncertainty in diffusion coordinates due to uncertainty in the measured fluxes/magnitudes) reduces the slope of the best-fit regression line. Mitigation of this bias is necessary if we are to use photometric redshift estimates produced by computationally efficient empirical methods in precision cosmology.
The classification of supernovae (SNe) and its impact on our understanding of the explosion physics and progenitors have traditionally been based on the presence or absence of certain spectral features. However, current and upcoming wide-field time-d omain surveys have increased the transient discovery rate far beyond our capacity to obtain even a single spectrum of each new event. We must therefore rely heavily on photometric classification, connecting SN light curves back to their spectroscopically defined classes. Here we present Superphot, an open-source Python implementation of the machine-learning classification algorithm of Villar et al., and apply it to 2315 previously unclassified transients from the Pan-STARRS1 Medium Deep Survey for which we obtained spectroscopic host-galaxy redshifts. Our classifier achieves an overall accuracy of 82%, with completenesses and purities of >80% for the best classes (SNe Ia and superluminous SNe). For the worst performing SN class (SNe Ibc), the completeness and purity fall to 37% and 21%, respectively. Our classifier provides 1257 newly classified SNe Ia, 521 SNe II, 298 SNe Ibc, 181 SNe IIn, and 58 SLSNe. These are among the largest uniformly observed samples of SNe available in the literature and will enable a wide range of statistical studies of each class.
113 - J. Singal , M. Shmakova , B. Gerke 2011
We present a determination of the effects of including galaxy morphological parameters in photometric redshift estimation with an artificial neural network method. Neural networks, which recognize patterns in the information content of data in an unb iased way, can be a useful estimator of the additional information contained in extra parameters, such as those describing morphology, if the input data are treated on an equal footing. We use imaging and five band photometric magnitudes from the All-wavelength Extended Groth Strip International Survey. It is shown that certain principal components of the morphology information are correlated with galaxy type. However, we find that for the data used the inclusion of morphological information does not have a statistically significant benefit for photometric redshift estimation with the techniques employed here. The inclusion of these parameters may result in a trade-off between extra information and additional noise, with the additional noise becoming more dominant as more parameters are added.
We present catalogs of calibrated photometry and spectroscopic redshifts in the Extended Groth Strip, intended for studies of photometric redshifts (photo-zs). The data includes ugriz photometry from CFHTLS and Y-band photometry from the Subaru Supri me camera, as well as spectroscopic redshifts from the DEEP2, DEEP3 and 3D-HST surveys. These catalogs incorporate corrections to produce effectively matched-aperture photometry across all bands, based upon object size information available in the catalog and Moffat profile point spread function fits. We test this catalog with a simple machine learning-based photometric redshift algorithm based upon Random Forest regression, and find that the corrected aperture photometry leads to significant improvement in photo-z accuracy compared to the original SExtractor catalogs from CFHTLS and Subaru. The deep ugrizY photometry and spectroscopic redshifts are well-suited for empirical tests of photometric redshift algorithms for LSST. The resulting catalogs are publicly available. We include a basic summary of the strategy of the DEEP3 Galaxy Redshift Survey to accompany the recent public release of DEEP3 data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا