ﻻ يوجد ملخص باللغة العربية
Dark matter interacting with the Standard Model fermions through new scalars or pseudoscalars with flavour-diagonal couplings proportional to fermion mass are well motivated theoretically, and provide a useful phenomenological model with which to interpret experimental results. Two modes of dark matter production from these models have been considered in the existing literature: pairs of dark matter produced through top quark loops with an associated monojet in the event, and pair production of dark matter with pairs of heavy flavoured quarks (tops or bottoms). In this paper, we demonstrate that a third, previously overlooked channel yields a non-negligible contribution to LHC dark matter searches in these models. In spite of a generally lower production cross section at LHC when compared to the associated top-pair channel, non-flavour violating single top quark processes are kinematically favored and can significantly increase the sensitivity to these models. Including dark matter production in association with a single top quark through scalar or pseudoscalar mediators, the exclusion limit set by the LHC searches for dark matter can be improved by $30$--$90%$, depending on the mass assumed for the mediator particle.
Recent work has argued that neural networks can be understood theoretically by taking the number of channels to infinity, at which point the outputs become Gaussian process (GP) distributed. However, we note that infinite Bayesian neural networks lac
Models incorporating flavoured dark matter provide an elegant solution to the dark matter problem, evading the tight LHC and direct direction constraints on simple WIMP models. In Dark Minimal Flavour Violation, a simple framework of flavoured dark m
We show how single top production at the LHC can be used to discover (and characterize the couplings of) B quarks, which are an essential part of many natural models of new physics beyond the Standard Model. We present the B effective model and conce
Two chaotic systems which interact by mutually exchanging a signal built from their delayed internal variables, can synchronize. A third unit may be able to record and to manipulate the exchanged signal. Can the third unit synchronize to the common c
We present a comprehensive analysis of the loop induced top quark FCNC signals at the LHC within one class of the simplified model. The loop level FCNC interactions are well motivated to avoid the hierarchy of the top quark couplings from the new phy