ترغب بنشر مسار تعليمي؟ اضغط هنا

Intrinsic basis-independent quantum coherence measure

58   0   0.0 ( 0 )
 نشر من قبل Weichen Wang
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum coherence is a key resource in quantum information processing scenarios, and quantifying coherence is an important task for both quantum foundation and quantum technology. However, until now, all most of coherence measures are basis-dependent that does not accord with physical reality, since the physical properties of the physical system should not be changed with the different choice of coordinate systems. Here, we propose an textit{intrinsic basis-independent quantum coherence measure} which satisfies all conditions for quantifying coherence. This measurement not only reveals physical essence of quantum coherence of the quantum state itself clearly, but also simplifies the measurement procedure by avoiding the optimization procedure of distance measure.

قيم البحث

اقرأ أيضاً

We study the geometric measure of quantum coherence recently proposed in [Phys. Rev. Lett. 115, 020403 (2015)]. Both lower and upper bounds of this measure are provided. These bounds are shown to be tight for a class of important coherent states -- m aximally coherent mixed states. The trade-off relation between quantum coherence and mixedness for this measure is also discussed.
Device-independent quantum key distribution (DIQKD) is the art of using untrusted devices to distribute secret keys in an insecure network. It thus represents the ultimate form of cryptography, offering not only information-theoretic security against channel attacks, but also against attacks exploiting implementation loopholes. In recent years, much progress has been made towards realising the first DIQKD experiments, but current proposals are just out of reach of todays loophole-free Bell experiments. Here, we significantly narrow the gap between the theory and practice of DIQKD with a simple variant of the original protocol based on the celebrated Clauser-Horne-Shimony-Holt (CHSH) Bell inequality. By using two randomly chosen key generating bases instead of one, we show that our protocol significantly improves over the original DIQKD protocol, enabling positive keys in the high noise regime for the first time. We also compute the finite-key security of the protocol for general attacks, showing that approximately 1E8 to 1E10 measurement rounds are needed to achieve positive rates using state-of-the-art experimental parameters. Our proposed DIQKD protocol thus represents a highly promising path towards the first realisation of DIQKD in practice.
131 - Yao Yao , G. H. Dong , Li Ge 2016
Since quantum coherence is an undoubted characteristic trait of quantum physics, the quantification and application of quantum coherence has been one of the long-standing central topics in quantum information science. Within the framework of a resour ce theory of quantum coherence proposed recently, a textit{fiducial basis} should be pre-selected for characterizing the quantum coherence in specific circumstances, namely, the quantum coherence is a textit{basis-dependent} quantity. Therefore, a natural question is raised: what are the maximum and minimum coherences contained in a certain quantum state with respect to a generic basis? While the minimum case is trivial, it is not so intuitive to verify in which basis the quantum coherence is maximal. Based on the coherence measure of relative entropy, we indicate the particular basis in which the quantum coherence is maximal for a given state, where the Fourier matrix (or more generally, textit{complex Hadamard matrices}) plays a critical role in determining the basis. Intriguingly, though we can prove that the basis associated with the Fourier matrix is a stationary point for optimizing the $l_1$ norm of coherence, numerical simulation shows that it is not a global optimal choice.
Within the framework of quantum refereed steering games, quantum steerability can be certified without any assumption on the underlying state nor the measurements involved. Such a scheme is termed the measurement-device-independent (MDI) scenario. He re we introduce a measure of steerability in an MDI scenario, i.e., the result merely depends on the observed statistics and the quantum inputs. We prove that such a measure satisfies the convex steering monotone. Moreover, it is robust against not only measurement biases but also losses. We also experimentally estimate the amount of the measure with an entangled photon source. As two by-products, our experimental results provide lower bounds on an entanglement measure of the underlying state and an incompatible measure of the involved measurement. Our research paves a way for exploring one-side device-independent quantum information processing within an MDI framework.
Quantifying coherence is an essential endeavor for both quantum foundations and quantum technologies. In this paper, we put forward a quantitative measure of coherence by following the axiomatic definition of coherence measures introduced in [T. Baum gratz, M. Cramer, and M. B. Plenio, Phys. Rev. Lett. 113, 140401 (2014)]. Our measure is based on fidelity and analytically computable for arbitrary states of a qubit. As one of its applications, we show that our measure can be used to examine whether a pure qubit state can be transformed into another pure or mixed qubit state only by incoherent operations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا