ﻻ يوجد ملخص باللغة العربية
In this paper, we investigate the impact of network densification on the performance in terms of downlink signal-to-interference (SIR) coverage probability and network area spectral efficiency (ASE). A sophisticated bounded dual-slope path loss model and practical user equipment (UE) densities are incorporated in the analysis, which have never been jointly considered before. By using stochastic geometry, we derive an integral expression along with closed-form bounds of the coverage probability and ASE, validated by simulation results. Through these, we provide the asymptotic behavior of ultra-densification. The coverage probability and ASE have non-zero convergence in asymptotic regions unless UE density goes to infinity (full load). Meanwhile, the effect of UE density on the coverage probability is analyzed. The coverage probability will reveal an U-shape for large UE densities due to interference fall into the near-field, but it will keep increasing for low UE densites. Furthermore, our results indicate that the performance is overestimated without applying the bounded dual-slope path loss model. The derived expressions and results in this work pave the way for future network provisioning.
In an Ultra-dense network (UDN) where there are more base stations (BSs) than active users, it is possible that many BSs are instantaneously left idle. Thus, how to utilize these dormant BSs by means of cooperative transmission is an interesting ques
Intelligent load balancing is essential to fully realize the benefits of dense heterogeneous networks. Current techniques have largely been studied with single slope path loss models, though multi-slope models are known to more closely match real dep
The 5G system has finally begun commercialization, and now is the time to start discussing the road map for the 6G system. While the 5G system was designed with a focus on discovering new service types for high speed, low-latency, and massive connect
We consider multiple source nodes (consumers) communicating wirelessly their energy demands to the meter data-management system (MDMS) over the subarea gateway(s). We quantify the impacts of passive and active security attacks on the wireless communi
Quantifying the impact of parametric and model-form uncertainty on the predictions of stochastic models is a key challenge in many applications. Previous work has shown that the relative entropy rate is an effective tool for deriving path-space uncer